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Keywords: ABSTRACT

Artificial Intelligence. In this study, three types of gas sensors were fabricated using thin-film technology: tin oxide
Gas Sensors. doped with tungsten (SnO2+WOs3), tin oxide doped with zinc oxide (SnO2+Zn0), and tungsten
Early Fusion Model. oxide doped with zinc oxide (WOs+ZnO). These sensors were synthesised with multiple doping
Individual Neural Models. ratios and operated at two temperatures (250 °C and 350 °C). They were exposed to acetone
Late Fusion Model. and ethanol vapours at a concentration of 500 ppm, and measurements were recorded for
Response Time. sensitivity response (S) and response time (t). Three neural network models were developed
Sensitivity. using artificial intelligence to predict sensitivity and response time: individual neural models

for each sensor; an early fusion model that combines inputs and outputs into a unified network;
and a late fusion model that separates each task into an independent subnetwork. The models
were trained using MATLAB’s nntraintool and evaluated using quantitative metrics (MAE,
RMSE, R?, MAPE) and training/visual indicators such as performance curves, gradient, mu,
error histogram, and regression plots. Randomisation was fixed to ensure consistent data
distribution across training, validation, and testing sets, enabling fair comparisons between the
models under equal experimental conditions. The results showed that the individual model for
the SnO+WOs sensor achieved the highest accuracy in sensitivity prediction, while the
WO:+Zn0O model excelled in response time estimation. The late fusion model demonstrated the
most balanced and reliable performance, with the lowest error rates and highest correlation
coefficients, confirming its strong generalisation capability. In contrast, the early fusion model
showed good training performance but limited generalisation, particularly in predicting
response time. This study presents a novel framework for intelligent prediction of gas sensor
behaviour, combining experimental validation with neural modelling. It offers a valuable
contribution to the development of accurate and generalisable sensing systems for industrial
and smart environments.
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1. Introduction

In recent decades, artificial intelligence (Al) has emerged as a central
tool in data analysis, prediction, and the automation of complex
processes. Among its most widely used techniques are neural
networks, which excel in learning from data, pattern recognition, and
modelling complex physical systems. Within this context, Al
applications in gas sensor technologies have gained increasing
attention, aiming to improve detection accuracy, response speed, and
selectivity in industrial and smart environments.
Recent advancements in Al have significantly influenced the
development of gas sensor technologies, particularly in enhancing
detection accuracy, response speed, and selectivity. Several studies
have explored Al-based approaches to enhance gas sensing
performance across various dimensions. Early multimodal fusion
techniques have achieved detection accuracies up to 96%,
outperforming both thermal imaging and traditional sensor models [1].
The effectiveness of combining early and late fusion using multimodal
Al has been demonstrated, reaching over 95% accuracy in gas
identification [2]. Deep learning models utilising multimodal data
including sensor readings, thermal images, and signal inputs have
maintained high classification accuracy even under noisy conditions
[3].
Explainable AI (XAI) techniques have been applied to improve the
interpretability of low-cost gas sensors, thereby enhancing trust in
model decisions and enabling more transparent deployment in safety-
critical environments [4]. A physical surface-state model was
integrated with a GRU-based neural network, significantly improving
predictions of gas concentration and response time [5]. A multitask
system combining electronic nose and thermal imaging, utilising CNN
and Bi-LSTM architectures, was proposed to detect gas leaks with
99.25% accuracy [6].
Key advancements in gas sensing technologies include Al integration
with machine learning, miniaturisation of wearable sensors, the use of
nanomaterials to enhance selectivity, and IoT connectivity for
improved safety in industrial settings [7]. Machine learning models for
gas leak detection have shown that data fusion from multiple sources
significantly improves classification reliability [8]. A novel technique
using coherently controlled Quartz-Enhanced Photoacoustic
Spectroscopy (QEPAS) has enabled real-time detection of extremely
low gas concentrations [9].
A critical synthesis of these studies reveals several shared themes: a
focus on classification and detection tasks, the use of fusion techniques
to improve model performance, and efforts to enhance real-time
responsiveness and interpretability. However, persistent challenges
remain, including sensor drift, limited selectivity, and the impact of
environmental noise. Notably, most prior research has emphasised
classification or detection rather than precise prediction of core sensor
characteristics, namely sensitivity and response time, which are
essential for long-term reliability and operational efficiency.
This study aims to address that gap by developing neural network
models capable of accurately predicting both sensitivity and response
time. Three architectures are explored: individual models, early
fusion, and late fusion. This approach offers a novel contribution to
intelligent sensing systems by combining predictive precision and
generalisation capability.

2. Methodology:
This study was conducted in two main phases: Experimental
fabrication of gas sensors and computational modeling using neural
networks. The methodology integrates material synthesis, data
acquisition, and predictive modeling to evaluate sensor behavior under
controlled conditions.
2.1. Sensor Fabrication and Experimental Setup:
Three types of gas sensors were fabricated using thin film deposition
techniques:
¢ Tin oxide doped with tungsten oxide (SnO2+WQO3).
o Tin oxide doped with zinc oxide (SnO2+ZnO0O).
e Tungsten oxide with zinc oxide (WO3+ZnO).
Each sensor was synthesized with doping of were [2%, 6%, 10%, 12%,
14%] and operated at two temperatures : 250°C and 350°C. sensors
were exposed to acetone and ethanol vapors at a fixed concentration
of 500 ppm. Measurements were recorded for two key indicators:
e Sensitivity response (S).
e Response time (t).
2.2. Data Acquisition and Preprocessing:
Sensor reading was collected under consistent environmental
conditions. The dataset was randomized and split into:
e 70% for training.
o 15% for validation.
o 15% for testing.
Five additional doping ratios [3%, 5%, 8%, 11%, 13%] were reserved
for testing to evaluate model generalization on unseen data.
2.3. Neural Network Architecture :
Three modeling strategies were implement:
o Individual Models: Separate networks for each sensor.
o Early Fusion Model: Unified network combining inputs and outputs.
e Late Fusion Model: Multi-output architecture with task-specific
subnetworks.
Each model used a feedforward neural network (FNN) with:
¢ One hidden layer of 10 neurons.
o Logistic activation (logsig) in hidden layer.
e Linear activation (purelin) in output layer.
Training was performed using MATLAB’s nntraintool with
backpropagation algorithm.
2.4. Evaluation Metrics :
Model performance was assessed using:
e Mean Absolute Error (MAE).
e Root Mean Squared Error(RMSE).
o Coefficient of determination (R2).
e Mean Absolute Percentage Error (MAPE).
Additional indicators included:
e Performance curves.
e Gradient and Mu values.
e Validation checks.
e Error histograms.
e Regression plots.
2.5. Flowchart of Experimental and Modeling Procedure: :
To clarify the methodology, Figure (1) shows a flowchart
summarizing the full process from sensor fabrication to model
evaluation.
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Fig.1: Flowchart of the Experimental and Modelling Procedure

3. Results and Discussion:
This study was divided into two main parts:

Part One: Evaluating Neural Model Performance for Predicting
Sensor Response and Response Time Using Three Techniques:

3.1. Individual Models:

Separate neural models were developed and trained for each sensor
using data acquired from their experimental measurements. Five
previously unseen doping ratio were introduced during the testing
phase (3%, 5%, 8%, 11%, 13%). These values were selected within
the original experimental range (2% to 14%) but were deliberately
excluded from the training dataset. This approach was designed to
assess the models’ ability to predict outputs for novel input conditions
and serves as a critical step in ensuring the rigor and reproducibility of
the experiment.

The predicted values generated by the neural networks were then
compared with the experimentally measured values, in order to
evaluate each model's generalization capability within the data range.

3.2. Neural Network Training Performance:

A feedforward neural network (FNN) of the multilayer perceptron
(MLP) type was employed, consisting of an input layer. A single
hidden layer with 10 neurons, and an output layer. The model was
trained using the backpropagation algorithm within the MATLAB
environment. The hidden layer utilized the logistic activation function
(logsig) due to its ability to capture nonlinear relationships, while the
output layer used a linear activation function (purelin) to generate
continuous values appropriate for the target variables namely,
sensitivity and response time.

The choice of 10 neurons in the hidden layer was based on achieving
a balance between model complexity and generalization capability.

SnO,+ WO, SnQ, + ZnO

Given the limited number of input features (operating temperature,
type of gas, and doping ratio), two output parameters (sensitivity and
response time) and the moderate size of the dataset, this configuration
provided sufficient representational power without introducing
overfitting. Empirical results confirmed that the network reached
optimal performance within a small number of epochs, validating the
adequacy of this architecting. An analysis of the performance curves
in Figure (2) reveals that the models associated with the (SnO2+ZnO)
and (SnO2+WO3) sensors reached early convergence, achieving their
best MSE values at Epochs 5 and 3 respectively (MSE=4.9985 and
0.50214). While this indicates fast learning, the relatively higher error
values and lower test phase correlation coefficients (R) suggest limited
generalization capability.

Minor fluctuations in the validation curves further support the need for
architectural refinement or improved parameter adjustment.

In contrast, the model associated with the (WO3+ZnO) sensor
exhibited a gradual learning trajectory, reaching its optimal
performance at Epoch=14 with an MSE = 7.2847. The training
indicators Gradient = 0.007789, Mu=1e-5, and Validation Checks=6
reflect stable and balanced learning behaviour. This progressive
improvement, coupled with consistent training dynamics, positions the
model as a promising candidate in terms of accuracy and reliability
within a controlled experimental setting.

It is worth noting that hyper parameter tuning was not extensively
optimized in this phase. The number of hidden neurons was selected
based on an initial balance between complexity and generalization.
We acknowledge this as a limitation of the current study and identify
it as an area for future enhancement.
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Fig.2: Neural Network Training Interface (Individual Models)
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3.3. Analysis of Neural Network Performance Curves:
Performance curves were analysed by tracking the evolution of the
Mean Squared Error (MSE) during training.

The dataset was divided into training (70%), validation (15%), and

Best Validation Performance is 0.50214 at epoch 3
SnO. + WO:

Mean Squared Error (mse)

8 Epochs
8 Epochs

testing (15%) subsets. Results were presented using a logarithmic
scale, which allowed for highlighting subtle differences in
performance across iterations.

Figure (3) shows these performance curves.

Sest Validation Performance is 4.9985 at epoch 5
i Sno; « Zno = *r_

Mean Squared Eror (mse)

8 Epochs
25 Epochs

Best Validation Performance is 7.2847 at epoch 14

WO ~ ZnO

Moan Sguared Error (mse)

= 10 12
20 Epochs

1a TS 18 20

Fig.3: Performance Curve During Neural Network Training (Individual Models)

The comparative performance curves of the three neural network
models revel that all architectures reached a stable state within a
limited number of training epochs, with no clear signs of overfitting.
However, a deeper quantitative analysis highlights distinct differences
in learning behaviour and generalization capacity.

The (SnO2+WO3) model achieved its optimal performance at epoch 3,
with a low (MSE=0.502), indicating rapid learning and early
stabilization without oscillation — suggesting strong generalization
ability. In contrast, the (SnO2+Zn0O) model showed a fast drop in error
at epoch 5, but its relatively higher (MSE=4.998) and visible
fluctuations in the validation curve suggest sensitivity to training data
and limited generalization. The (WO3+Zn0O) model required more
iterations epoch 14 to reach its best performance, with an
(MSE=7.284), reflecting gradual learning and moderate stability,
albeit with lower predictive accuracy. Based on this analysis, the

Pl
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(Sn0O2+WO3) model demonstrates the most balanced performance in
terms of learning speed, stability, and accuracy, making it the most
suitable candidate for reliable gas sensing applications.

It is also worth noting that this model achieved the lowest validation
error among all studied architectures, with an (MSE=0.50214) at
epoch 3, further confirming its strong generalization capability and
numerical precision.

3.4. Correlation Coefficient (R) Analysis Between Predicted and
Actual Values:

The liner correlation coefficient (R) was used as a statistical indicator
to evaluate the degree of agreement between the model outputs and
the target values across the training, validation, and testing phases.
Values close to 1 indicate high predictive accuracy, and strong
generalization capability.

Output == {'Target ¢ 02

Fig.4: Linear Correlation Coefficients R (Individual Models)

As shown Figure (4) the (SnO2+WOs3) model achieved R values of
(0.99999) training, (0.99991) validation, and (0.99989) testing,
demonstrating near-perfect linear correspondence and minimal
deviation across all phase. These results confirm the model’s
robustness and its ability to generalize effectively to unseen data.

In contrast, the (SnO2+Zn0O) model, while maintaining high R values
during training and validation, exhibited a regression offset of (+0.22)
in the testing phase, indicating a slight prediction bias that may
compromise its reliability in real-world scenarios.

The (WOs3+ZnO) model exhibited relative fluctuation during
validation and testing, with larger deviations in the regression
equation, suggesting limited generalization capacity despite its high

training accuracy.

Accordingly, the (SnO2+WOs3) model appears to be the most efficient
in terms of consistency and generalization, while the other two models
demonstrate good learning performance but varying degrees of
predictive stability when exposed to new data.

3.5. Analysis of Training Indicators (Gradient, Mu, Validation
Checks) (Individual Models):

Figure (5) shows the evolution of the three key training indicators
(Gradient, Mu, Validation Checks) across the learning process of the
three neural network models under investigation. These indicators are
critical for assessing model stability, convergence behaviour, and the
likelihood of overfitting.
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The model based on the composite (SnO2+WO3) demonstrated a well-
balanced training trajectory, reaching convergence at epoch 8 with a
Gradient value of (1.22e-12), and Mu coefficient of (le-11), along
with five validation checks. These numerically low values reflect early
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convergence toward an optimal solution and indicate a high stable
learning process with minimal weight adjustment, suggesting effective
training without oscillation or instability.
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Fig.5: Training Indicators (Gradient, Mu, Validation Checks) (Individual Models)

Similarly, the (SnO2+Zn0O) model reached convergence at epoch 8,
with comparably low gradient and Mu values. However, the lower
number of validation checks (3) may indicate either premature
convergence or sensitivity to data distribution, warranting cautious
interpretation of its predictive reliability.

In contrast, the (WO3+ZnO) model required a longer training period
(epoch 20) to achieve optimal performance, with a Gradient of
0.007789, Mu of (le-5), and six validation checks. This gradual
learning behavior suggests a more flexible adaptation to the data,
though it may also reflect slower convergence or the need for further
parameter tuning to enhance stability.

Based on these observations, the (SnO2+WO3) model appears to the
most efficient in terms of learning speed and performance stability,
indicating strong generalization capability under unseen conditions.
The other two models, while achieving convergence, exhibit varying
training dynamics that highlight the need for architectural refinement

or hyper parameter optimization to ensure consistent performance.
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3.6. Analysis of Error Histograms (Individual Models):

Figure (6) shows the distribution of residuals the differences between
target and predicted values across the training, validation, and testing
datasets, using histogram with 20 bins. This type of analysis is
essential for gaining deeper insight into model behavior, as it goes
beyond conventional quantitative metrics to reveal the model’s
generalization ability and predictive stability.

The concentration of residuals around zero indicates that the model
does not suffer from systematic errors, reflecting a strong alignment
between predicted and actual values. Conversely, the spread of the
distribution serves as an indicator of the model’s sensitivity to input
variations; the narrower the distribution, the more stable and consistent
the model’s predictions. From this perspective, residual analysis
provides a qualitative diagnostic tool that complements traditional
quantitative metrics, offering a visual understanding of model
behavior under diverse operating conditions.
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Fig.6: Error Histograms ( Individual Model )

The (SnO2+Zn0) model exhibits a narrow and symmetric distribution
centered around zero, particularly in the testing phase, indicating high
predictive accuracy and strong generalization capability without
systematic bias.

The (SnO2+WO3) model showed a reasonably centered distribution
with slight deviations in the testing data, suggesting limited variability

in response to certain input cases.

In contrast the (WO3+ZnO) model displays a wider spread of
residuals, especially in the testing dataset, reflecting weaker
generalization and reduced accuracy in handling certain scenarios.
These visual patterns confirm that residual analysis serves as a
valuable qualitative diagnostic tool, complementing correlation

JOPAS Vol.24 No. 3 2025

162



Al-based Neural Networks for Gas-Sensor Sensitivity and Response-Time Prediction

Maznouk.

coefficients and regression plots, and providing a visual lens into
model behavior under varied and previously unseen operating
conditions.

3.7. Analysis of the Alignment Between Actual and Predicted
Values for All Three Models:

Figure (7) shows the degree of agreement between actual and

SnoO. + WOs

Response: Actual vs. Expected

Response
4
1
3

State

Time: Actual vs. Expected

Tme

predicted values for both response and response time. Reflecting the
efficiency of the studied models in simulating gas sensor behavior.
These plots serve as essential evaluation tools in analyzing the
performance of neural networks, as they enable the assessment of
prediction accuracy across various experimental samples.
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Fig.7: Model Performance Based on Actual vs. Predicted Results (Individual Models)

The results indicate that the model based on the combination
(SnO2+WO3) demonstrates the highest levels of accuracy and stability,
with predicted values closely matching the actual ones. This suggests
strong generalization capability and a low prediction error rate. Such
performance reflects the effectiveness of the neural architecture in
capturing underlying patterns in the data and enhances the model’s
reliability in practical applications.

The (SnO2+Zn0O) model, on the other hand, shows generally good
performance, with minor fluctuation observed in response time
predictions, this implies that the model is capable of accurate
representation, though it is less stable compared to the first model and
may be influenced by data distribution or specific sample
characteristics.

In contrast, the (WO3+Zn0O) model exhibits noticeable variation in
prediction accuracy, particularly in samples where predicted values
deviate from the general trend of actual values. This discrepancy
reflects the model’s limited generalization ability and suggests the
need for architectural refinement or retraining to improve
performance.

Based on the above, it can be concluded that the (SnO2+WO3) model
is the most efficient in terms of accuracy and stability, followed by the
(Sn02+Zn0) model with good performance, while the (WO3+ZnO)
model requires further improvements to achieve more reliable results.
These insights are summarized in Table (1) below:

Table 1: Comparative Analysis of Training Indicators for the Three

Sensors
Sensors Response Match Time Match  General Observations
. Robust predictive
(SnO,+WO5) Very High Excellent performance
(SnO,+Zn0O) Good to Excellent Good Slight fluctuation observed
(WOs+ZnO) Good Variation in Model requires

samples improvement

1.7 Comparative Evaluation of Model Performance on Seen vs.
Unseen Data:

A detailed evaluation of the three sensor models (Table 2)
(Sn02+W03) , (Sn02+Zn0) and (WO3+ZnO) reveals distinct patterns
in their predictive behavior across training/validation and unseen test
data. The (SnO2+WOs3) model demonstrated the strongest
generalization capability for sensitivity prediction, with R? improving
from 0.67 to 0.92 on unseen doping ratios. Although its training R?
showed high variance, the test performance was consistently accurate,
indicating robust extrapolation.

In addition to R?, the Mean Absolute Percentage Error (MAPE)
provides further insight into prediction accuracy by quantifying the
average deviation between predicated and actual values as a

JOPAS Vol.24 No. 3 2025

percentage. Lower MAPE values indicate better model reliability and
practical usability.

Notably, the (SnO2+WO3) model achieved the lowest MAPE for
sensitivity prediction on unseen data (1.33%), confirming its superior
generalization. Similarly, the (WO3+ZnO) model achieved the highest
R? for response time prediction on the test set (0.92), confirming its
reliability in temporal estimation, and achieved the lowest MAPE for
response time prediction(1.84%), reinforcing its reliability in temporal
estimation.

In contrast, the (SnO2+Zn0O) model exhibited a significant drop in R?
for sensitivity (from 0.66 to 0.53), , accompanied by a higher MAPE
(2.48%), suggesting limited generalization despite acceptable time
prediction.

These findings highlight the superior performance of (SnO2+WOs3) in
sensitivity modeling and (WO3+ZnO) in time prediction, while
underscoring the need for further optimization in the (SnO2+ZnO)
configuration.

Table 2 : Accuracy Metrics for Individual Models

Sensor D;;z;::t Metric Type MAE RMSE) R? MAPE
Training/Val (Response) 0.017  0.024  0.671  2.043
SnO: + idation Time 3.619 5725  0.881 1.825
WO: Test (Unseen (Response) 0.010 0.012  0.918 1.33
Ratios) Time 5449 5832  0.839 2.78
Training/Val (Response)  0.020  0.028  0.661 2.397
SnO: + idation Time 33890 5468 0.889 1.721
ZnO  Test (Unseen (Response) 0.019  0.025 0.533 2.48
Ratios) Time 3922 4773 0911 1.85
Training/Val (Response)  0.019  0.026  0.711  2.369
WO; + idation Time 5.097 7755 0.891  2.681
ZnO  Test (Unseen (Response) 0.012  0.013  0.920 1.41
Ratios) Time 3486  5.127  0.925 1.84

A summary of the above is presented in Table (3)

Table (3): Comparison of the Coefficient of Determination (R?)
between Training and Test Data for Evaluation Model Stability and

Accuracy
Sensor  Metric Type Test R* Training R*> Generalization Qality
Sn0,+  (Response)  0.918 0.671 Excellent (clear
WO, improvement)
Time 0.839 0.881 Strong (Slight drop)
SnO>+  (Response)  0.533 0.661 Weak (performance
7n0 decline)
Time 0911 0.889 Strong (improved)
WOs+  (Response)  0.920 0.712 Exce”“;fig)able and
Zn0 Time 0.925 0.891 Best overall

Based on all of the above, it can be concluded that:
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The (WOs + ZnO) based model initially showed promising
performance in predicting response time, which can be attributed to
the nanostructured porous architecture of the sensing layer. A recent
study demonstrated that the formation of heterojunctions between
WOs and ZnO significantly increase the electron depletion layer and
enhance the generation of active oxygen species on the surface,
leading to rapid and stable responses to VOCs [10].

In contrast, the (SnO2 + WOs) composite exhibited more favorable and
balance behavior in sensitivity prediction. This is due to SnO2 strong
surface oxygen adsorption and high reactivity with organic
compounds. Its integration with WO3 creates synergistic charge
transfer effects and lowers the operating temperature, resulting in
improved sensor stability and performance. Multiple studies have
confirmed this synergy, showing that the heterojunctions between
SnOz and WO; directly influence electrical conductivity and chemical
response [11], while the hierarchical nanostructure enhances
selectivity and thermal stability [12][13].

3.8. Interpretation of Nonlinear Relationships Revealed by Neural
Networks:

In addition to quantitative performance metrics, the neural network
models uncovered several non-obvious relationships between system
inputs and outputs. For instance, the doping ratio exhibited a nonlinear
effect: while higher doping levels generally increased sensitivity, they
also led to longer response times due to surface charge accumulation
and slower recovery dynamics [3].

Temperature also demonstrated gas-specific behavior. Ethanol
showed improved response time at elevated temperatures but reduced
sensitivity, likely due to accelerated desorption kinetics. In contrast,
acetone exhibited enhanced sensitivity under higher temperature
conditions, suggesting stronger adsorption interactions [2][14].

These complex interactions were primarily captured by the late fusion
model, which enabled separate learning pathways for sensitivity and
response time. This architectural separation allowed the network to
model distinct dependencies more accurately, thereby enhancing
interpretability.

These finding highlight the neural network’s ability to detect hidden
patterns that are not easily observable through traditional analysis,
offering valuable insights for sensor design and performance
optimization [15].

4. Early Fusion Model:

Integrating data from multiple sources is a powerful approach to
enhance the efficiency of predictive models and improve their
generalization capabilities.

Following the results obtained from analysing individual modes, we
proceeded to combine the data to improve network representation,
accelerate learning, and enhance prediction accuracy.

Early fusion helps combine data from different sources before
analysis, making it a useful way to improve model learning. In this
approach, the input feature from the three sensors were integrated at
an early stage-prior to model training-forming a unified matrix that
includes all input variables (temperature, vapour type, sensor type,
doping ratio).

Each experimental instance thus represented a complete set of
information. A neural network was then used to train the model on this
fused data, allowing the network to learn shared relationships between
the different sensors and generate a more comprehensive
representation of the system's behaviour.

The aim of studying this fusion approach is to improve model
performance, accelerate learning, and reduce variance resulting from
dependence on a single sensor.

Figure (8) shows the training process of the neural network. As shown,
the final performance (MSE) reached a value of 2.05e-5 after only 17
training epochs-an impressive decrease compared to the initial value
of2.12e+3. The swift reduction in error metrics highlights the model's
ability to learn effectively within a limited number of training epochs,
suggesting strong pattern recognition capabilities. The Gradient value
(0.0122) suggests that the network is still undergoing minor weight
adjustments. Meanwhile, the Mu coefficient reached 0.001, indicating
the algorithm's stability and no need for further modifications to the
training method. The Validation Checks parameter reached its
maximum value (6), which triggered training termination-meaning the

model achieved its optimal performance before overfitting occurred.

<#\ Neural Network Training (nntraintool) — O >

Neural Network

Hidden Output

= i

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error (rmse)
Calculations: MEX

Progress
Epoch: o [I 17 iterations 1000
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Fig.8: Neural Network Training Interface (Early Fusion)
4.1. Performance Curve Analysis of Neural Networks (Early
Fusion):
Figure (9) shows the performance curve of the neural network across
17 training epochs, where the Mean Squared Error (MSE) was tracked
for the training, validation, and test sets. It is observed that the model
achieved its best performance on the validation set epoch 11, with an
MSE value of 17.5373, as indicated by the green circle.
This behaviour reflects the application of the Early Stopping
technique, which aims to prevent overfitting by monitoring the
model’s performance on the validation set. At epoch 11, the model
has leaned the essential patterns in the data without beginning to
memorize random details or noise.
Beyond this point, slight fluctuations in the model’s performance
begin to appear, as shown in the validation curve, indicating a gradual
decline in generalization capability. These fluctuations may be
attributed to:
Increased model complexity relative to the dataset size.
Sensitivity of the model to the data distribution in the validation set.
The onset of overfitting, where training performance improves while
validation performance deteriorates.
It is also noteworthy that the test curve remains relatively stable,
suggesting that the model maintain its predictive ability on unseen
data, which is a positive indicator of good generalization.

Best Validation Performance is 17.5373 at epoch 11
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Fig.9: Performance Curves During Neural Network Training (Early
Fusion)

4.2. Analysis of the Correlation Coefficient (R) Between Predicted
Figure (10) shows the correlation coefficient (R), between the target
values and the predicted outputs of the neural network across the
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training, validation, and testing phases, as well as the overall
performance on all data.

The results indicate that the model demonstrates a strong ability to
represent the relationship between inputs and outputs. In the training
phase, the model achieved a perfect match with an R value of 1.00000,
as shown in Table (3) with the approximation equation: Output =
1xTarget — 0.00036.

In the validation phase, the model exhibits a behaviour described as
slight under fitting, with an R value of 0.99928. The slope in the
approximation equation is less than 1(0.98), with a positive bias
(+0.2), suggesting that the model did not capture the relationship with
complete precision, although it remains very close to ideal
performance. This minor deviation may be attributed to the data
distribution or the limited size of the validation set.

In the testing phase, the model maintains a good fit, with an R value
0f 0.99929 and a slope of 1, accompanied by a small negative bias (-
0.27).

This reflects the model’s ability to generalize and predict accurately
on unseen data, which is a key indicator of robust generalization.
Considering the overall performance across all data, the model
achieved an R value of 0.99976, with a near-perfect approximation
equation: Output=1xTarget-0.02. This indicates an excellent balance
between learning and generalization, confirming that the neural
network is capable of accurately modelling the relationship between
inputs and outputs, with only minimal deviations that do not
significantly affect predication quality.
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Fig.10: Correlation Coefficients (R) (Early Fusion)
Detailed results corresponding to each phase are provided in Table (4).

Table 4: Correlation Coefficients (R) (Early Fusion)

Phase Correlation Approximation Equation General
Coefficients (R) Observation
Training 1 Output=1xTarget-0.00036  Perfect match
Validation 0.99928 Output=0.98xTarget+0.2  Slight underfitting
Test 0.99929 Output=1xTarget-0.27 Good match
All 0.99976 Output=IxTarget-0.02  Lxccllent overall
performance

4.3. Analysis of Training Indicators (Gradient, Mu, Validation
Checks) (Early Fusion):

Figure (11) shows the performance of three key dynamic indicators
during the training of the early fusion model (Gradient, Mu, Validation
Checks).

Collectively, these indicators suggest that the model learned with
relative effectiveness over 17 training epochs. The gradient value
gradually decreased, reaching 0.012159 by the final epoch, indicating
that the model was approaching convergence and that weight updates
were stabilizing.

However, the fact that the gradient did not reach very small values
(e.g.<le-4) implies that the model had not yet achieved optimal
maturity and may still hold potential for further improvement. On the
other hand, the update parameter Mu exhibited stable behavior,
settling at le-5 by the end of training, which is a positive sign of
learning stability and reduced need for significant parameter
adjustments. The number of validation checks reached 6 in the final

epoch a relatively high count that reflects repeated assessments of the
model’s performance on the validation set without notable
improvement. This may indicate that the model was entering a
saturation phase, where additional training no longer yields
meaningful gains, Such behavior triggers the early stopping
mechanism and serves as a cautionary signal for potential overfitting.
According, it can be concluded that the model demonstrated stable and
effective learning behavior, yet did not reach full maturity, allowing
for further optimization through parameter tuning or reevaluation of
the training duration to achieved more ideal performance.

Gradient = 0.012159, at epoch 17

5
8. o
5:10°
1o? Mu = 1e-05, at epoch 17
3
E
10°° ]
& Validation Checks = 6, at epoch 17
2
| ¢
2 *
>2 & ¢
L 4 L 4 L 4
R £ TIRANE R R A TR 14 16
17 Epochs
Fig. 11: Training Indicators (Gradient, Mu, Validation Checks)
(Early Fusion)

4.4. Analysis of Error Histogram (Early Fusion):

Figure (12) shows the error histogram resulting from the difference
between the target values and the predicted outputs, distributed across
20 bins covering a range of errors approximately between

(-12.66 to -10.92) .

It is observed that the majority of errors are concentrated around zero,
with the highest frequency occurring in bins very close to the zero
point. This indicates that the early fusion model is capable of
producing highly accurate predictions with notable stability. The
balance distribution of errors reflects the absence of systematic bias in
the predictions, suggesting that the model does not tend to
overestimate or underestimate, but rather exhibits a symmetrical
behavior around the ideal value. Moreover, the narrow spread and tight
clustering of errors indicate low variance in the outputs, which is a
strong sign of model stability and learning efficiency. Notably, the
errors from the training, validation, and testing sets all fall within the
same range, demonstrating consistency across different learning phase
and reinforcing confidence in the model’s generalization capability.
Accordingly, Figure (12) serves as both a visual and statistical
confirmation of the neural network’s effectiveness in accurately
modeling the relationship between inputs and outputs, supporting its
suitability for practical applications and scientific publication.
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4.5. Analysis of Predicted vs. Actual Value Alignment (Early
Fusion):
Figure (13) shows a precise comparison between the actual and
predicted values generated by the early fusion model for both response
and response time. The two plots clearly demonstrate that the model
exhibits excellent effectiveness in representing the relationship
between inputs and outputs, with the curves showing near-perfect
alignment and only minor fluctuations that do not significantly affect
prediction accuracy. In the case of response, the model closely follows
the true pattern within a range of approximately (0.7 to 1.0), indicating
its ability to capture subtle variations in sensory behavior. For
response time, the predicted values consistently mirror the actual
values within a range of (150 to 250), reflecting the model’s reliable
performance in forecasting time-related variables, The slight
deviations observed in both plots may be attributed to noise in the
original data or the model’s sensitivity to specific individual cases, yet
they do not indicate any systematic learning deficiency.
The high degree of agreement between actual and predicted values,
along with the preservation of overall trend directions, serves as strong
evidence of the model’s generalization and extrapolation capabilities,
reinforcing its suitability for practical application and scientific
publication.
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Fig.13: Early Fusion Model Performance Based on Actual vs.
Predicted Values
a. Scientific Formulation for Publication:
Analysis of the Early Fusion Model:

Table (5) shows the performance evaluation of the early fusion model
in predicting both response and response time across two phases
(training/validation and testing using unseen ratios). Four key
statistical metrics were employed to assess the model’s accuracy
(Mean Absolute Error (MAE), Root Mean Square Error (RMSE),
Coefficient of Determination (R?), and Mean Absolute Percentage
Error (MAPE)), providing a comprehensive understanding of the
model’s learning and generalization capabilities.

In the training /validation phase, the model demonstrated notable
accuracy in predicting response values, with MAE reaching 0.05338
and RMSE approximately 0.06589, indicating relatively low absolute
error. The R? value of 0.66294 suggests that the model explain over
66% of the variance in the sensory data. Additionally, the MAPE of
3.3368% reinforces the model’s reliability for practical applications.
For response time, although the performance was reasonably good, the
MAE and RMSE values were higher (2.51012 and 3.82540,
respectively), reflecting greater variability in temporal predictions.
Nevertheless, the R? of 0.67986 and MAPE of 5.4648% remain within
acceptable ranges, indicating the model’s ability to capture temporal
relationships.

In the test phase with unseen ratios, the model exhibited strong
generalization ability in predicting response, as error metrics
significantly decreased (MAE=0.0205, RMSE=0.0270), and R?
increased to 0.6984, indicating improved variance explanation.

The MAPE of 2.51% further confirms high prediction accuracy under
novel conditions. In contrast, the model faced greater challenges in

Performance

predicting response time, with MAE and RMSE rising to 9.0461 and
12.0513, respectively, and R? dropping to 0.5586, suggesting a relative
weakness in explaining temporal variance.

However, the MAPE of 4.61 remains within a reasonable range,
reflecting acceptable performance given the complexity of the time
variable.

Table 5: Accuracy Indicators for the early fusion model
Sensor Dataset Type Metric Type MAE RMSE R> MAPE

Training/Vali ~ (Response) 0.053  0.066 0.663 3.33%7

Early dation Time 2510 3.825 0.680 5.46%5
fusion Test (Unseen  (Response) 0.021 0.027 0.698 2.51%
Ratios) Time 9.046  12.05 0.559 4.61%

5. Late Fusion:

Late fusion is also considered an effective strategy for combining
information after it has been independently processed by multiple
models or subnetworks. The late fusion model allows for in-depth
examination of each output and achieves an excellent balance between
predictive accuracy and training stability.

In this study, a simple late fusion approach was adopted to improve
the prediction accuracy of both the response and response time. To
accomplish this, two separate neural networks were trained, each
designated for a distinct prediction task, using the same shared input
dataset.

Figure (14) shows the training process of the neural network in the late
fusion model. As shown, the model reached its best performance at
MSE=0.516 compared to its high initial value of 1.57e+3, after a
limited number of training epoch(13).

This significant drop indicates that the model learned rapidly and
effectively. The current Gradient value (1.46) suggests the model is
still undergoing gradual refinement of weights. Meanwhile, the Mu
coefficient of 0.1 indicates that the algorithm maintained a slight
adjustment to improve performance without drastic changes to the
updata mechanism. The Validation Checks parameter reached its
maximum value (6), which led to automatic early stopping, thereby
preventing overfitting. Overall, the late fusion model demonstrated
high training efficiency and numerical balance across learning
indicators.
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Fig.14: Neural Network Training Interface (Late Fusion)

5.1. Analysis of Neural Network Performance Curves:

Figure (15) shows the performance curves of the late fusion model
across the training, validation, and testing phases, with the Mean
Squared Error (MSE) tracked over 13 training epochs. The model
achieved its best validation performance at epoch 7, recording the
lowest MSE value of 8.5057. which indicates that it reached an
optimal learning state relatively early. This early drop in error reflects
the efficiency of the model’s architecture in capturing the fundamental
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patterns in the data without requiring extensive training, highlighting
the effectiveness of its internal design.

Meanwhile, the training curve continues to decline steadily throughout
the learning process, suggesting that the model consistently improves
its internal weights and reduces error on the training data, without
signs of saturation or stagnation. However, a slight rise in the
validation curve after epoch 7 signals the onset of overfitting, where
the model begins to adapt too closely to the training data at the expense
of its generalization ability. Although this increase is modest, it
warrants caution in selecting an appropriate early stopping point to
preserve predictive accuracy on unseen data.

The testing curve remains consistently higher than the validation
curve, indicating that the model did not generalize perfectly to new
data. This gap between validation and testing performance reflects a
generalization gap a common phenomenon in models that learn well
from original data but struggle with unfamiliar case.

Nevertheless, the overall stability of the curves and the absence of
sharp fluctuations suggest that the model maintained balances training
behaviour and achieved its lowest error at a suitable point, reinforcing
its reliability and highlighting its potential for further improvement
through regularization techniques or enhanced training data diversity.

Best Validation Performance is 8.5057 at epoch 7
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Fig.15: Performance Curves During Neural Network Training (late
Fusion)

To address the observed signs of overfitting and improve
generalization capability, future studies are encouraged to apply
regularization strategies such as Dropout, L2 weight decay, or cross-
validation. These techniques can help stabilize learning, reduce
variance, and enhance the robustness of multi-output neural
architectures under diverse experimental conditions.

5.2. Analysis of Correlation Coefficient (R) Between Predicted and
Actual values:

Figure (16) shows four regression plots that illustrate the performance
of the late fusion model across the training, validation, testing, and
overall phase. These plots depict the relationship between the target
values and the model’s predicted outputs, each represented by a linear
approximation equation and a correlation coefficient (R) that
quantifies the strength of the linear fit. This type of analysis serves as
a powerful tool for evaluation how accurately the model simulates the
true behavior of the data across different stages.

During the training phase, the model achieved an exceptionally high
correlation coefficient (R=0.99645), with a regression equation of
Output = 0.95xTarget+ 7.4 .

This indicates near-perfect alignment between predicted and actual
values, as the slope approaches unity and the intercept remains
minimal. Such performance reflects the model’s strong ability to learn
the internal patterns of the data with remarkable precision.

In the validation phase, the model maintained high accuracy, with
R=0.99042 and a regression equation of Output = 1 xTarget+ 0.43 .
This equation is nearly ideal, suggesting that the model not only
learned effectively but also remained stable when exposed to unseen
data that was not directly used during training.

In contrast, the testing phase revealed a relative decline in
performance.

The correlation coefficient dropped to 0.93224, and the regression

equation shifted to Output = 0.74xTarget+ 47 . The reduced slope and
increased intercept indicate that the model struggled to generalize
perfectly to entirely new data, revealing a generalization gap that may
require future improvements in model architecture or training data
diversity.

When considering the overall performance across all phases, the
model achieved a strong correlation (R=0.99328) with a regression
equation of Output = 0.94xTarget+ 9.2 .

This demonstrates that the model maintained consistent and reliable
behavior in representing the input-output relationship, even when
aggregation across varied data conditions.

Based on these findings, it can be concluded that the late fusion model
exhibited excellent performance during training and validation, with
high precision and stability.

While the testing phase showed room for improvement in
generalization, the overall consistency in regression slopes and the
high correlation values across phases confirm the model’s balanced
learning behavior.
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Fig.16: Correlation Coefficients (R) (Late Fusion)
Table (6) provides a summary of the output results.

Table 6: Correlation Coefficients (R) (Late Fusion)

Phase Correlation Approximation General
Coefficients (R) Equation Observation
Training 0.99645 Output=0.95xTarget+7.4 Very high
Validation 0.99043 Output=1xTarget+0.43  High and precise
Test 0.93224 Output=0.74xTarget+47  -OWer accuracy,
needs improvement
All 0.99328 Output=0.94xTarget+92  Strong overall

performance

5.3. Analysis of Training Indicators (Gradient, Mu, Validation
Checks) (late Fusion):

Figure (17) shows a comprehensive view of the training dynamics of
the late fusion model across 13 epochs, highlighting three key
indicators:

Gradient descent behavior, the adaptive learning rate parameter (Mu),
and validation checks. Together, these plots offer valuable insight into
the model’s internal optimization process and its ability to maintain
balanced learning.

The first plot illustrates the evolution of the gradient values, which
began at a relatively high level and decreased progressively to 1.457
by epoch 13.

This steady decline reflects the model’s successful optimization of its
internal weights, with no abrupt fluctuations or instability. Such
behavior is indicative of a well-structured learning process, where the
model continuously minimizes the error function through smooth
gradient descent, avoiding erratic updates that could compromise
convergence.

The second plot tracks the Mu parameter, which represents the
adaptive learning rate within the training algorithm. Mu increased
gradually to a value of 0.1 by the final epoch, remaining within the
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active adjustment range. This suggests that the model was still refining
its parameters but had begun approaching a stable state. The moderate
value of Mu indicates that the algorithm was neither stagnant nor
overly aggressive, allowing for controlled and meaningful updates
without requiring drastic reconfiguration.

The third plot shows the progression of validation checks, which
reached the maximum threshold of 6 at epoch 13. This triggered the
early stopping mechanism, a safeguard designed to halt training once
the model achieves optimal validation performance. The activation of
early stopping at this point confirms that the model had reached its
peak generalization capacity before entering the overfitting zone,
preserving its ability to perform well on unseen data.

Taken together, these indicators demonstrate that the late fusion model
exhibited a highly balanced and effective training behavior. The
gradual reduction in gradient values, the controlled rise in Mu, and the
timely activation of early stopping all point to a model that leaned
efficiently, stabilized appropriately, and avoided overfitting. This
reinforces the model’s robustness and reliability.
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Fig.17: Training Indicators (Gradient, Mu, Validation Checks) (late
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5.4. Analysis of Error Histogram (Late Fusion):

Figure (18) shows the error distribution plot for the late fusion model,
where prediction errors (defined as the difference between target
values and model outputs) are grouped into 20 bins across the training,
validation, and testing datasets. This type of analysis provides a
precise assessment of the model’s predictive accuracy and its ability
to generalize across different data subsets.

The plot reveals that the majority of errors in the training data are
concentrated around the bin centered at 0.24, which lies closest to the
zero-error line (indicated by the vertical orange line). This dense
clustering near zero reflects the model’s high accuracy in prediction,
demonstrating its ability to represent the data with minimal deviation.
Such behavior indicates that the learning process effectively
minimized discrepancies between actual and predicted values.

The overall error range spans from (-5.277 to 12.19), which is
relatively moderate and suggests that the model did not produce
extreme or erratic predictions. Moreover, the distribution of errors
across the training (blue), validation (green), and testing (red) sets
appears relatively balanced, indicating that the model performance
consistently across different data groups and does not over fit to a
specific subset.

This balance in error distribution, combined with the central
concentration near zero, serves as strong evidence that the model is
not biased or over fitted. Instead, it exhibits stable and well-regulated
behavior, reinforcing its reliability for practical applications.
Additionally, the absence of skewed distribution or heavy tails
suggests that the model is not disproportionately affected by or rare
case.
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Fig.18: Error Histogram (late Fusion)
5.5. Analysis of Actual vs. Predicted Value Alignment:
Figure (19) shows a precise visual comparison between the actual and
predicted values generated by the late fusion model across two distinct
outputs: response and response time. The plots reveal a strong visual
alignment between the solid black lines (actual values) and the dashed
lines (predicted values), demonstrating the model’s ability to
accurately simulate the true behavior of the data.
In the upper plot, representing the response output, the model closely
tracks the variations in the actual data, with the predicted values (blue
dashed line) showing near-perfect alignment with the true values
(black line). This strong visual match indicates that the model
successfully captured the sensory relationship between inputs and
outputs without significant deviation, reinforcing its reliability in
predicting perceptual behavior.
In the lower plot, which represents response time, the model also
exhibits balanced visual performance, The predicted values (red
dashed line) closely follow the actual values across different cases.
Although time prediction is typically more challenging due to higher
variability, the model maintained a commendable level of visual
accuracy, suggesting that its learning mechanism effectively captured
temporal patterns.
This visual consistency across both outputs serves as strong evidence
of the model’s generalization capability. The performance was not
limited to a specific dataset but extended to unseen -case,
demonstrating robustness and adaptability. Moreover, the uniformity
in prediction quality across different output types reflects internal
balance in the model’s architecture, further supporting its suitability
for multidimensional applications.
Based on these observations, it can be concluded that the late fusion
model exhibited visually balanced and effective performance, with
clear predictive accuracy and generalization ability.
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5.6. Scientific Formulation for Publication: Performance Analysis
of the Late Fusion Model:

Table (7) shows the performance evaluation of the early fusion model
in predicting both response and response time across two phase
(training/validation and testing using unseen ratios).

Table 7 :Accuracy Indicators for the Late Fusion Model
Sensor Dataset Type Metric Type MAE RMSE R?> MAPE
Training/  (Response) 0.002 0.004 0.996 %0.19
Late  Validation Time 2455 3.356 0978 %1.23
fusion Test (Unseen (Response) 0.014 0.019 0.841 %1.76
Ratios) Time 7.36  10.11 0.674 %3.76

The performance of the late fusion model was evaluated using a set of
standard statistical metrics, including (MAE, RMSE, R?, MAPE).
These metrics were applied to both the training/validation dataset
(seen data) and the test dataset (unseen data) to assess the model’s
generalization ability and predictive accuracy across different
contexts.
Results indicated that the model achieved high performance on the
seen data. For the response variable, MAE was 0.00166 and RMSE
was 0.00362, with a very high R? value of 0.99603, suggesting that the
model explains over 99% of the variance in the data. The MAPE was
extremely low (0.19%), reflecting excellent predictive precision. For
the time variable, the performance was also satisfactory, with MAE of
2.45502, RMSE of 3.35605, R? of 0.97821, and MAPE of 1.23%.
In contrast, the model showed a noticeable decline in performance
when applied to unseen data. For the response variable, MAE
increased to 0.0142 and RMSE to 0.0194. while R? dropped to 0.8417,
indicating reduced explanatory power. MAPE also rose to 1.76%. For
the time variable, the performance was significantly lower, with MAE
of 7.36, RMSE of 10.11, R? 0f 0.6749, and MAPE of 3.76%.
These finding highlight clear challenges in the model’s generalization
capability, particularly in predicting time under unseen conditions. It
is recommended to revisit the data distribution used during training
and consider applying regularization techniques such as Dropout or
Early Stopping. Additionally, redesigning the model architecture may
enhance its generalization ability and improve performance in unseen
environments.
Part 2: Comparative Analysis of the Three Neural Models for
Predicting Sensors Response and Response Time
Accurate and efficient prediction of response and response time in gas
sensor depends on designing neural models that can precisely
represent output behavior both numerically and visually. Given these
considerations, a structured comparison was carried out to evaluate the
performance of the three neural models previously examined-namely,
the individual models, early fusion, and late fusion-in order to identify
the most reliable and effective architecture.

v" Numerical and Training Performance Indicators for the

Models (Individual-Early Fusion-Late Fusion):

The numerical and training performance indicators for the individual,
early fusion, and late fusion models are summarised in Table 8.

Table 8: Numerical and Training Performance Indicators

Best MSE Final Final Validation
Sensor/Model Achieved Epoch Gradient Mu Checks
(SnO,+WO;) 0.502 3 1.22¢12 le! 5
(SnO,+Zn0O) 4.999 5 5.58¢3 le! 3
(WO;3+Zn0) 7.285 14 0.008 le? 6
Early Fusion 17.537 11 0.012 le? 6
Late Fusion 8.506 7 1.46 0.1 6

v Analysis of Correlation Coefficient (R) and Regression
Equations for the Models (Individual-Early Fusion-Late
Fusion):

The correlation coefficients (R) and regression equations for the

individual, early fusion, and late fusion models are presented in

Table 9.

Table 9: Correlation Coefficient (R) and Regression Equations

Sensor/Model Prominent R.egression Highest (R)
Equations Value
(SnO,+WOs3) Output=1xTarget+0.01 0.99999
(SnO,+Zn0O) Output=1xTarget+0.011 1
(WO;+Zn0) Output=1xTarget-2.8¢° 1
Early Fusion Output=1xTarget-0.00036 1
Late Fusion Output=0.95xTarget+7.4 0.99645
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v' Error Distribution Analysis (Error Histogram) for the
Models (Individual-Early Fusion-Late Fusion):
The error distribution analysis for the individual, early fusion, and late
fusion models is presented in Table 10.
Table 10: Error Distribution
Error Concentration Overall Distribution

Sensor/Model Location Evaluation
Highly accurate and
(SnO,+WOs3) -0.103 balanced
(SnO,+Zn0O) -0.048 Slight adjustment needed
(WO;+Zn0O) +0.3861 Clear deviation
Early Fusion -0.2483 Accurately distributed
Late Fusion +0.24 Low and balanced error

v Visual Analysis of Actual vs. Predicted Value Alignment for
the Models (Individual-Early Fusion-Late Fusion):
The visual analysis of actual versus predicted value alignment for the
models is summarised in Table 11.

Table 11: Response and Response Time Matching Quality

Response  Response Time .
Sensor/Model Match Match General Observation
(SnO,+WOs3) Very High Excellent Strong predictive model
Good with minor . .
(SnO,+Zn0) Very Good deviation Slight fluctuation
Relatively Moderate with clear .
(WO3+Zn0O) Good fluctuation Needs improvement

Excellent visual balance,
with minor variability
Strong response match

with slight time deviation

Early Fusion Very High Good to Very Good

Late Fusion Very High Good to Very Good

« Analysis of prediction Accuracy Discrepancies between
Sensitivity and Response Time across all models:

A comparative evaluation of the three neural architectures (individual
models, early fusion, late fusion) reveals a consistent discrepancy in
prediction accuracy between the two target variables: sensitivity and
response time. This indicates that the models did not predict both
variables with equal precision.

In the individual models, the (SnO2+WQs3) configuration
demonstrated superior accuracy in predicting sensitivity (R? =
0.91791) compared to response time (R? = 0.83882). Conversely, the
(WO3+Zn0O) model achieved higher accuracy in predicting response
time (R? = 0.92471) than sensitivity (R?> = 0.91974). The (SnO2+ZnO)
model showed the weakest generalization for sensitivity (R? =
0.53324), despite maintaining strong performance in response time
prediction (R? = 0.91068).

The early fusion model exhibited acceptable performance in predicting
response time (MAE=2.51012), but its accuracy in sensitivity
prediction was notably lower (MAE=0.05338). This suggest that early
fusion may introduce representational overlap between tasks, limiting
the model’s ability to specialize in each output.

In contrast, the late fusion model demonstrated the most balanced
performance, achieving exceptionally high accuracy in sensitivity
prediction (MAE=20.00166) and relatively strong results for response
time (MAE=2.45502). This supports the effectiveness of task
separation in enhancing predictive precision across distinct outputs.
Potential causes for this discrepancy include:

. Variable nature: Sensitivity tends to follow more stable
patterns based on material properties, while response time is
influenced by dynamic factors such as adsorption/desorption rates and
internal diffusion, making it more volatile and harder to model.

. Model architecture: Task-specific models (late fusion) allow
for deeper specialization, whereas unified models (early fusion) may
suffer from representational interference.

. Data distribution: Sensitivity data may exhibit more
consistent trends, facilitating learning, while response time data may
contain greater variability across samples.

Future studies should consider designing neural architectures that
incorporate task (specific optimization) such as modular subnetworks
or late fusion strategies to ensure balanced predictive performance
across multiple outputs and improve model reliability in real-world
sensing applications.

« Statistical Analysis of Accuracy Indicators (MEA, RMSE,
R?, MAPE) for the Models (Individual-Early Fusion-Late
Fusion):

The individual model based on the (SnO>+WOs3) sensor demonstrated
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superior numerical accuracy in sensitivity prediction, achieving the
lowest MAE and RMSE values on unseen data, along with a
significant improvement in R? from 0.67 to 0.92.

Its MAPE value of 1.33% further confirms its reliability in
extrapolating to novel doping ratios. In contrast, the (WO3+ZnO)
model showed the highest R? (0.92471) and lowest MAPE (1.84%) for
response time prediction, indicating strong temporal modelling
performance. The (SnO2+ZnO) model, however, exhibited a notable
drop in R? for sensitivity (from 0.66 to 0.53) and a higher MAPE
(2.48%), Suggesting limited generalization despite acceptable time
prediction accuracy.

The early fusion model yielded balanced performance in training, with
moderate MAE and RMSE values and R? scores above 0.66 for both
outputs. However, its generalization on unseen data was weaker,
particularly for response time, where RMSE rose to 12.05and R?
dropped to 0.5586. This suggests that early fusion may introduce
representational overlap between tasks, limiting specialization and
reducing predictive precision.

In contrast, the late fusion model achieved the most consistent and
balance performance across both outputs. It recorded the lowest MAE
(0.00166) and RMSE (0.00362) for response prediction in training,
with an exceptionally high R? of 0.99603 and a minimal MAPE of
0.19%. While its performance declined on unseen data, the model
maintained acceptable accuracy levels, with R? values of 0.8417 for
response and 0.6749 for response time, and MAPE values of 1.76%
and 3.76%, respectively.

Overall, the statistical indicator confirm that the late fusion model
offers the best trade-off between precision and generalization, making
it the most suitable architecture for multi-output prediction tasks. The
individual (SnO2+WO3) model remains optimal for single-output
sensitivity prediction, while the early fusion model, despite its training
stability, requires further refinement to improve generalization on
unseen data.

+« Comparison of Proposed Models with Existing Approaches

for Predicting Sensitivity and Response Time:

A review of prior literature reveals that most Al-based studies have
focused on gas classification or leak detection tasks using techniques
such as early fusion, convolutional neural networks (CNN), recurrent
architectures (GRU, Bi-LSTM), or multitask systems. While these
approaches achieved high classification accuracy, they did not
explicitly address the quantitative prediction of two core sensor
performance metrics: sensitivity and response time.

In contrast, the present study introduces a novel contribution by
developing neural network models capable of accurately predicting
both variable using three distinct architectures ( individual, early
fusion, late fusion). The results demonstrate that the late fusion model
outperforms existing methods in terms of precision (MAE, RMSE,
R?), offering balanced and stable predictions for both outputs. Unlike
previous studies, this model separates tasks effectively and provides
detailed quantitative evaluation, which enhances its generalization
capability and practical relevance.

Therefore, the proposed models go beyond conventional Al
applications by offering a robust framework for multi-output
prediction in intelligent sensing system, representing a meaningful
advancement in both research and industrial contexts.

6. Limitations of the study:
We acknowledge several limitations in the current study:

First, all experiments were conducted at a fixed gas concentration of
500 ppm, which may not reflect sensor behaviour under varying
exposure levels.

Second, only two gas types (acetone, ethanol) were evaluated, limiting
the generalizability of the models to broader chemical environments.
Third, the operating temperature were restricted to (250°C, 350°C),
which may not capture performance dynamics at lower or higher
thermal conditions.
Additionally, environmental factors such as humidity, cross-gas
interference, and long-term drift were not considered in this phase.
These limitations are recognized as areas for future expansion to
enhance model robustness and practical applicability.

7. Conclusion

This study successfully demonstrated the application of artificial
intelligence (specifically neural network architectures) in predicting
two critical performance metrics of gas sensors: sensitivity and
response time. Three sensor configurations (SnO2+WOs, SnO>+Zn0O,
WOs+ZnO) were fabricated and evaluated under controlled
conditions, and three modelling strategies were implemented:
individual models, early fusion, and late fusion. The results revealed
that the SnO-+WO: sensor model achieved the highest accuracy in
sensitivity prediction, while the WOs+ZnO model excelled in response
time estimation. The late fusion architecture emerged as the most
balanced and reliable approach, offering superior generalisation and
predictive stability across both outputs. In contrast, the early fusion
model showed good training performance but limited generalisation,
particularly for time prediction. Statistical indicators (MAE, RMSE,
R%, MAPE), regression analysis, error histograms, and visual
alignment plots collectively confirmed the robustness of the late fusion
model and its suitability for multi-output prediction tasks.

Moreover, the neural networks uncovered nonlinear relationships
between doping ratios, temperature, and gas type, providing deeper
insights into sensor behaviour that traditional analysis could not
reveal.

8. Future Work:

Building on the current findings, future work will focus on expanding
the scope and applicability of the proposed models.

First, we plan to explore more advanced neural architectures such as
convolutional neural networks (CNNs). recurrent neural networks
(RNNs), and GRU-based models to capture temporal and spatial
dependencies in sensor data [7].

Second, the study will be extended to include a broader range of gases,
including ammonia, nitrogen dioxide, and volatile organic compounds
(VOCs), to improve generalizability across industrial and
environmental contexts.

Third, real-world datasets will be incorporated to evaluate model
robustness under uncontrolled conditions, including variable
humidity, temperature fluctuations, and cross-gas interference [16].
Finally, application-specific optimization will be pursued, such as
tailoring models for wearable sensors, smart city monitoring, and food
safety applications, where rapid and reliable gas detection is critical
[17]. These directions aim to enhance both the scientific depth and
practical relevance of intelligent gas sensing system.
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