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 A B S T R A C T 

In this study, three types of gas sensors were fabricated using thin-film technology: tin oxide 

doped with tungsten (SnO₂+WO₃), tin oxide doped with zinc oxide (SnO₂+ZnO), and tungsten 

oxide doped with zinc oxide (WO₃+ZnO). These sensors were synthesised with multiple doping 

ratios and operated at two temperatures (250 °C and 350 °C). They were exposed to acetone 

and ethanol vapours at a concentration of 500 ppm, and measurements were recorded for 

sensitivity response (S) and response time (t). Three neural network models were developed 

using artificial intelligence to predict sensitivity and response time: individual neural models 

for each sensor; an early fusion model that combines inputs and outputs into a unified network; 

and a late fusion model that separates each task into an independent subnetwork. The models 

were trained using MATLAB’s nntraintool and evaluated using quantitative metrics (MAE, 

RMSE, R², MAPE) and training/visual indicators such as performance curves, gradient, mu, 

error histogram, and regression plots. Randomisation was fixed to ensure consistent data 

distribution across training, validation, and testing sets, enabling fair comparisons between the 

models under equal experimental conditions. The results showed that the individual model for 

the SnO₂+WO₃ sensor achieved the highest accuracy in sensitivity prediction, while the 

WO₃+ZnO model excelled in response time estimation. The late fusion model demonstrated the 

most balanced and reliable performance, with the lowest error rates and highest correlation 

coefficients, confirming its strong generalisation capability. In contrast, the early fusion model 

showed good training performance but limited generalisation, particularly in predicting 

response time. This study presents a novel framework for intelligent prediction of gas sensor 

behaviour, combining experimental validation with neural modelling. It offers a valuable 

contribution to the development of accurate and generalisable sensing systems for industrial 

and smart environments.  

 الذكاء الاصطناعي المعتمد على الشبكات العصبية للتنبؤ بالحساسية وزمن الاستجابة في الحساسات الغازية 
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 الملخص  

في هذا البحث، تم تصنيع ثلاثة أنواع من الحساسات الغازية باستخدام تقنية الأغشية الرقيقة، وهي: أكسيد القصدير  

( التنغستين  بأكسيد  )SnO₂+WO₃المشاب  الزنك  بأكسيد  المشاب  القصدير  وأكسيد   ،)SnO₂+ZnO وأكسيد  ،)

( الزنك  بأكسيد  )WO₃+ZnOالتنغستين المشاب    C°250(، وذلك بنسب إشابة متعددة وعند درجتي حرارة تشغيل 

بتركيز  C°350و لبخاري الأسيتون والإيتانول  تم تعريض هذه الحساسات  المليون، وتم تسجيل قراءات    500(.  في  جزء 

(، تم تطوير ثلاثة نماذج عصبية باستخدام الذكاء الاصطناعي المعتمد على  t( وزمن الاستجابة )Sالاستجابة التحسسية )

الشبكات العصبية للتنبؤ بالاستجابة وزمن الاستجابة، وهي: نماذج عصبية فردية لكل حساس. نموذج دمج مبكر يجمع  

يب النماذج باستخدام المدخلات والمخرجات في شبكة موحدة. نموذج دمج متأخر يفصل كل مهمة في شبكة مستقلة. تم تدر 
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بيئة    nntraintoolأداة   كمية   MATLABفي  مؤشرات  باستخدام  وتقييمها   ،MAE)  ،RMSE  ،R²  ،

(MAPE  ( مثل  وبصرية  تدريبية  مؤشرات  إلى  بالإضافة   ،Performance, Gradient , Mu, Error 

Histogram, Regression  والتحقق التدريب  مراحل  عبر  للبيانات  ثابت  توزيع  لضمان  العشوائية  تثبيت  .(تم 

والاختبار، مما أتاح مقارنة عادلة بين النماذج تحت ظروف تجريبية متساوية. أظهرت النتائج أن النموذج الفردي للحساس  

(SnO₂+WO₃ ( حقق أعلى دقة في التنبؤ بالحساسية، بينما تفوق نموذج )WO₃+ZnO في توقع زمن الاستجابة. أما )

نموذج الدمج المتأخر فقد أظهر الأداء الأكثر توازنًا وموثوقية، حيث سجل أقل نسب خطأ وأعلى معاملات ارتباط، مع توزيع 

بصري مثالي، مما يعكس فعالية الفصل المعماري في تحسين دقة التنبؤ وقابلية التعميم. في المقابل، أظهر نموذج الدمج  

أداءً جيدًا أثناء التدريب، لكنه واجه تحديات في التعميم، خاصة في توقع الزمن. تقدم هذه الدراسة إطارًا جديدًا    المبكر

للتنبؤ الذكي بسلوك الحساسات الغازية، يجمع بين التحقق التجريبي والنمذجة العصبية، ويُعد مساهمة علمية في تطوير 

 بيئات الصناعية والذكية. أنظمة استشعار دقيقة وقابلة للتطبيق في ال
 

1. Introduction   

In recent decades, artificial intelligence (AI) has emerged as a central 

tool in data analysis, prediction, and the automation of complex 

processes. Among its most widely used techniques are neural 

networks, which excel in learning from data, pattern recognition, and 

modelling complex physical systems. Within this context, AI 

applications in gas sensor technologies have gained increasing 

attention, aiming to improve detection accuracy, response speed, and 

selectivity in industrial and smart environments. 

Recent advancements in AI have significantly influenced the 

development of gas sensor technologies, particularly in enhancing 

detection accuracy, response speed, and selectivity. Several studies 

have explored AI-based approaches to enhance gas sensing 

performance across various dimensions. Early multimodal fusion 

techniques have achieved detection accuracies up to 96%, 

outperforming both thermal imaging and traditional sensor models [1]. 

The effectiveness of combining early and late fusion using multimodal 

AI has been demonstrated, reaching over 95% accuracy in gas 

identification [2]. Deep learning models utilising multimodal data 

including sensor readings, thermal images, and signal inputs have 

maintained high classification accuracy even under noisy conditions 

[3]. 

Explainable AI (XAI) techniques have been applied to improve the 

interpretability of low-cost gas sensors, thereby enhancing trust in 

model decisions and enabling more transparent deployment in safety-

critical environments [4]. A physical surface-state model was 

integrated with a GRU-based neural network, significantly improving 

predictions of gas concentration and response time [5]. A multitask 

system combining electronic nose and thermal imaging, utilising CNN 

and Bi-LSTM architectures, was proposed to detect gas leaks with 

99.25% accuracy [6]. 

Key advancements in gas sensing technologies include AI integration 

with machine learning, miniaturisation of wearable sensors, the use of 

nanomaterials to enhance selectivity, and IoT connectivity for 

improved safety in industrial settings [7]. Machine learning models for 

gas leak detection have shown that data fusion from multiple sources 

significantly improves classification reliability [8]. A novel technique 

using coherently controlled Quartz-Enhanced Photoacoustic 

Spectroscopy (QEPAS) has enabled real-time detection of extremely 

low gas concentrations [9]. 

A critical synthesis of these studies reveals several shared themes: a 

focus on classification and detection tasks, the use of fusion techniques 

to improve model performance, and efforts to enhance real-time 

responsiveness and interpretability. However, persistent challenges 

remain, including sensor drift, limited selectivity, and the impact of 

environmental noise. Notably, most prior research has emphasised 

classification or detection rather than precise prediction of core sensor 

characteristics, namely sensitivity and response time, which are 

essential for long-term reliability and operational efficiency. 

This study aims to address that gap by developing neural network 

models capable of accurately predicting both sensitivity and response 

time. Three architectures are explored: individual models, early 

fusion, and late fusion. This approach offers a novel contribution to 

intelligent sensing systems by combining predictive precision and 

generalisation capability. 

2. Methodology: 

This study was conducted in two main phases: Experimental 

fabrication of gas sensors and computational modeling using neural 

networks. The methodology integrates material synthesis, data 

acquisition, and predictive modeling to evaluate sensor behavior under 

controlled conditions. 

2.1 . Sensor Fabrication and Experimental Setup: 

Three types of gas sensors were fabricated using thin film deposition 

techniques: 

• Tin oxide doped with tungsten oxide (SnO2+WO3). 

• Tin oxide doped with zinc oxide (SnO2+ZnO). 

• Tungsten oxide with zinc oxide (WO3+ZnO).  

Each sensor was synthesized with doping of were [2%, 6%, 10%, 12%, 

14%] and operated at two temperatures : 2500C and 3500C. sensors 

were exposed to acetone and ethanol vapors at a fixed concentration 

of 500 ppm. Measurements were recorded for two key indicators: 

• Sensitivity response (S). 

•  Response time (t). 

2.2. Data Acquisition and Preprocessing: 

Sensor reading was collected under consistent environmental 

conditions. The dataset was randomized and split into: 

• 70% for training. 

• 15% for validation. 

• 15% for testing. 

 Five additional doping ratios [3%, 5%, 8%, 11%, 13%] were reserved 

for testing to evaluate model generalization on unseen data. 

2.3. Neural Network Architecture : 

Three modeling strategies were implement: 

• Individual Models: Separate networks for each sensor. 

• Early Fusion Model: Unified network combining inputs and outputs. 

• Late Fusion Model: Multi-output architecture with task-specific 
subnetworks. 

Each model used a feedforward neural network (FNN) with: 

• One hidden layer of 10 neurons. 

• Logistic activation (logsig) in hidden layer. 

• Linear activation (purelin) in output layer. 

Training was performed using MATLAB’s nntraintool with 

backpropagation algorithm. 

2.4. Evaluation Metrics : 

Model performance was assessed using: 

• Mean Absolute Error (MAE). 

• Root Mean Squared Error(RMSE). 

• Coefficient of determination (R2). 

• Mean Absolute Percentage Error (MAPE). 

Additional indicators included: 

• Performance curves. 

• Gradient and Mu values. 

• Validation checks. 

• Error histograms. 

• Regression plots. 

2.5. Flowchart of Experimental and Modeling Procedure: : 

To clarify the methodology, Figure (1) shows a flowchart 

summarizing the full process from sensor fabrication to model 

evaluation.
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Fig.1: Flowchart of the Experimental and Modelling Procedure

3. Results and Discussion: 

This study was divided into two main parts:  

Part One: Evaluating Neural Model Performance for Predicting 

Sensor Response and Response Time Using Three Techniques: 

3.1. Individual Models: 

Separate neural models were developed and trained for each sensor 

using data acquired from their experimental measurements. Five 

previously unseen doping ratio were introduced during the testing 

phase (3%, 5%, 8%, 11%, 13%). These values were selected within 

the original experimental range (2% to 14%) but were deliberately 

excluded from the training dataset. This approach was designed to 

assess the models’ ability to predict outputs for novel input conditions 

and serves as a critical step in ensuring the rigor and reproducibility of 

the experiment.  

The predicted values generated by the neural networks were then 

compared with the experimentally measured values, in order to 

evaluate each model's generalization capability within the data range. 

3.2. Neural Network Training Performance: 

A feedforward neural network (FNN) of the multilayer perceptron 

(MLP) type was employed, consisting of an input layer. A single 

hidden layer with 10 neurons, and an output layer. The model was 

trained using the backpropagation algorithm within the MATLAB 

environment. The hidden layer utilized the logistic activation function 

(logsig) due to its ability to capture nonlinear relationships, while the 

output layer used a linear activation function (purelin) to generate 

continuous values appropriate for the target variables namely, 

sensitivity and response time.  

The choice of 10 neurons in the hidden layer was based on achieving 

a balance between model complexity and generalization capability. 

Given the limited number of input features (operating temperature, 

type of gas, and doping ratio), two output parameters (sensitivity and 

response time) and the moderate size of the dataset, this configuration 

provided sufficient representational power without introducing 

overfitting. Empirical results confirmed that the network reached 

optimal performance within a small number of epochs, validating the 

adequacy of this architecting. An analysis of the performance curves 

in Figure (2) reveals that the models associated with the (SnO2+ZnO) 

and (SnO2+WO3) sensors reached early convergence, achieving their 

best MSE values at Epochs 5 and 3 respectively (MSE=4.9985 and 

0.50214). While this indicates fast learning, the relatively higher error 

values and lower test phase correlation coefficients (R) suggest limited 

generalization capability. 

Minor fluctuations in the validation curves further support the need for 

architectural refinement or improved parameter adjustment. 

In contrast, the model associated with the (WO3+ZnO) sensor 

exhibited a gradual learning trajectory, reaching its optimal 

performance at Epoch=14 with an MSE = 7.2847.  The training 

indicators Gradient = 0.007789, Mu=1e-5, and Validation Checks=6 

reflect stable and balanced learning behaviour. This progressive 

improvement, coupled with consistent training dynamics, positions the 

model as a promising candidate in terms of accuracy and reliability 

within a controlled experimental setting. 

It is worth noting that hyper parameter tuning was not extensively 

optimized in this phase. The number of hidden neurons was selected 

based on an initial balance between complexity and generalization. 

We acknowledge this as a limitation of the current study and identify 

it as an area for future enhancement.

Fig.2: Neural Network Training Interface (Individual Models)
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3.3. Analysis of Neural Network Performance Curves: 

Performance curves were analysed by tracking the evolution of the 

Mean Squared Error (MSE) during training. 

The dataset was divided into training (70%), validation (15%), and 

testing (15%) subsets. Results were presented using a logarithmic 

scale, which allowed for highlighting subtle differences in 

performance across iterations. 

Figure (3) shows these performance curves.

 
Fig.3: Performance Curve During Neural Network Training (Individual Models) 

The comparative performance curves of the three neural network 

models revel that all architectures reached a stable state within a 

limited number of training epochs, with no clear signs of overfitting. 

However, a deeper quantitative analysis highlights distinct differences 

in learning behaviour and generalization capacity. 

The (SnO2+WO3) model achieved its optimal performance at epoch 3, 

with a low (MSE=0.502), indicating rapid learning and early 

stabilization without oscillation – suggesting strong generalization 

ability. In contrast, the (SnO2+ZnO) model showed a fast drop in error 

at epoch 5, but its relatively higher (MSE=4.998) and visible 

fluctuations in the validation curve suggest sensitivity to training data 

and limited generalization. The (WO3+ZnO) model required more 

iterations epoch 14 to reach its best performance, with an 

(MSE=7.284), reflecting gradual learning and moderate stability, 

albeit with lower predictive accuracy. Based on this analysis, the 

(SnO2+WO3) model demonstrates the most balanced performance in 

terms of learning speed, stability, and accuracy, making it the most 

suitable candidate for reliable gas sensing applications.  

It is also worth noting that this model achieved the lowest validation 

error among all studied architectures, with an (MSE=0.50214) at 

epoch 3, further confirming its strong generalization capability and 

numerical precision.    

3.4. Correlation Coefficient (R) Analysis Between Predicted and 

Actual Values: 

The liner correlation coefficient (R) was used as a statistical indicator 

to evaluate the degree of agreement between the model outputs and 

the target values across the training, validation, and testing phases. 

Values close to 1 indicate high predictive accuracy, and strong 

generalization capability.

 
Fig.4: Linear Correlation Coefficients R (Individual Models) 

As shown Figure (4) the (SnO2+WO3) model achieved R values of 

(0.99999) training, (0.99991) validation, and (0.99989) testing, 

demonstrating near-perfect linear correspondence and minimal 

deviation across all phase. These results confirm the model’s 

robustness and its ability to generalize effectively to unseen data. 

In contrast, the (SnO2+ZnO) model, while maintaining high R values 

during training and validation, exhibited a regression offset of (+0.22) 

in the testing phase, indicating a slight prediction bias that may 

compromise its reliability in real-world scenarios. 

The (WO3+ZnO) model exhibited relative fluctuation during 

validation and testing, with larger deviations in the regression 

equation, suggesting limited generalization capacity despite its high 

training accuracy. 

Accordingly, the (SnO2+WO3) model appears to be the most efficient 

in terms of consistency and generalization, while the other two models 

demonstrate good learning performance but varying degrees of 

predictive stability when exposed to new data.    

3.5. Analysis of Training Indicators (Gradient, Mu, Validation 

Checks) (Individual Models): 

Figure (5) shows the evolution of the three key training indicators 

(Gradient, Mu, Validation Checks) across the learning process of the 

three neural network models under investigation. These indicators are 

critical for assessing model stability, convergence behaviour, and the 

likelihood of overfitting. 



AI-based Neural Networks for Gas-Sensor Sensitivity and Response-Time Prediction                                                                                     Maznouk. 

JOPAS Vol.24 No.  3 2025                                                                                                                                                                      162  

The model based on the composite (SnO2+WO3) demonstrated a well-

balanced training trajectory, reaching convergence at epoch 8 with a 

Gradient value of (1.22e-12), and Mu coefficient of (1e-11), along 

with five validation checks. These numerically low values reflect early 

convergence toward an optimal solution and indicate a high stable 

learning process with minimal weight adjustment, suggesting effective 

training without oscillation or instability.

 
Fig.5: Training Indicators (Gradient, Mu, Validation Checks) (Individual Models) 

Similarly, the (SnO2+ZnO) model reached convergence at epoch 8, 

with comparably low gradient and Mu values. However, the lower 

number of validation checks (3) may indicate either premature 

convergence or sensitivity to data distribution, warranting cautious 

interpretation of its predictive reliability. 

In contrast, the (WO3+ZnO) model required a longer training period 

(epoch 20) to achieve optimal performance, with a Gradient of 

0.007789, Mu of (1e-5), and six validation checks. This gradual 

learning behavior suggests a more flexible adaptation to the data, 

though it may also reflect slower convergence or the need for further 

parameter tuning to enhance stability. 

Based on these observations, the (SnO2+WO3) model appears to the 

most efficient in terms of learning speed and performance stability, 

indicating strong generalization capability under unseen conditions. 

The other two models, while achieving convergence, exhibit varying 

training dynamics that highlight the need for architectural refinement 

or hyper parameter optimization to ensure consistent performance. 

3.6. Analysis of Error Histograms (Individual Models): 

 Figure (6) shows the distribution of residuals the differences between 

target and predicted values across the training, validation, and testing 

datasets, using histogram with 20 bins. This type of analysis is 

essential for gaining deeper insight into model behavior, as it goes 

beyond conventional quantitative metrics to reveal the model’s 

generalization ability and predictive stability. 

The concentration of residuals around zero indicates that the model 

does not suffer from systematic errors, reflecting a strong alignment 

between predicted and actual values. Conversely, the spread of the 

distribution serves as an indicator of the model’s sensitivity to input 

variations; the narrower the distribution, the more stable and consistent 

the model’s predictions. From this perspective, residual analysis 

provides a qualitative diagnostic tool that complements traditional 

quantitative metrics, offering a visual understanding of model 

behavior under diverse operating conditions.

 
Fig.6: Error Histograms ( Individual Model ) 

The (SnO2+ZnO) model exhibits a narrow and symmetric distribution 

centered around zero, particularly in the testing phase, indicating high 

predictive accuracy and strong generalization capability without 

systematic bias. 

The (SnO2+WO3) model showed a reasonably centered distribution 

with slight deviations in the testing data, suggesting limited variability 

in response to certain input cases. 

In contrast the (WO3+ZnO) model displays a wider spread of 

residuals, especially in the testing dataset, reflecting weaker 

generalization and reduced accuracy in handling certain scenarios. 

These visual patterns confirm that residual analysis serves as a 

valuable qualitative diagnostic tool, complementing correlation 
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coefficients and regression plots, and providing a visual lens into 

model behavior under varied and previously unseen operating 

conditions.  

3.7. Analysis of the Alignment Between Actual and Predicted 

Values for All Three Models: 

Figure (7) shows the degree of agreement between actual and 

predicted values for both response and response time. Reflecting the 

efficiency of the studied models in simulating gas sensor behavior. 

These plots serve as essential evaluation tools in analyzing the 

performance of neural networks, as they enable the assessment of 

prediction accuracy across various experimental samples.

 
Fig.7: Model Performance Based on Actual vs. Predicted Results (Individual Models) 

The results indicate that the model based on the combination 

(SnO2+WO3) demonstrates the highest levels of accuracy and stability, 

with predicted values closely matching the actual ones. This suggests 

strong generalization capability and a low prediction error rate. Such 

performance reflects the effectiveness of the neural architecture in 

capturing underlying patterns in the data and enhances the model’s 

reliability in practical applications. 

The (SnO2+ZnO) model, on the other hand, shows generally good 

performance, with minor fluctuation observed in response time 

predictions, this implies that the model is capable of accurate 

representation, though it is less stable compared to the first model and 

may be influenced by data distribution or specific sample 

characteristics. 

In contrast, the (WO3+ZnO) model exhibits noticeable variation in 

prediction accuracy, particularly in samples where predicted values 

deviate from the general trend of actual values. This discrepancy 

reflects the model’s limited generalization ability and suggests the 

need for architectural refinement or retraining to improve 

performance. 

Based on the above, it can be concluded that the (SnO2+WO3) model 

is the most efficient in terms of accuracy and stability, followed by the 

(SnO2+ZnO) model with good performance, while the (WO3+ZnO) 

model requires further improvements to achieve more reliable results.       

These insights are summarized in Table (1) below: 

Table 1: Comparative Analysis of Training Indicators for the Three 

Sensors 
Sensors Response Match Time Match General Observations 

(SnO2+WO3) Very High Excellent 
Robust predictive 

performance 

(SnO2+ZnO) Good to Excellent Good Slight fluctuation observed 

(WO3+ZnO) Good 
Variation in 

samples 
Model requires 
improvement 

1.7 Comparative Evaluation of Model Performance on Seen vs. 

Unseen Data:  

A detailed evaluation of the three sensor models (Table 2) 

(SnO2+WO3) , (SnO2+ZnO) and (WO3+ZnO) reveals distinct patterns 

in their predictive behavior across training/validation and unseen test 

data. The (SnO2+WO3) model demonstrated the strongest 

generalization capability for sensitivity prediction, with R2 improving 

from 0.67 to 0.92 on unseen doping ratios. Although its training R2 

showed high variance, the test performance was consistently accurate, 

indicating robust extrapolation. 

In addition to R2, the Mean Absolute Percentage Error (MAPE) 

provides further insight into prediction accuracy by quantifying the 

average deviation between predicated and actual values as a 

percentage. Lower MAPE values indicate better model reliability and 

practical usability. 

Notably, the (SnO2+WO3) model achieved the lowest MAPE for 

sensitivity prediction on unseen data (1.33%), confirming its superior 

generalization. Similarly, the (WO3+ZnO) model achieved the highest 

R2 for response time prediction on the test set (0.92), confirming its 

reliability in temporal estimation, and achieved the lowest MAPE for 

response time prediction(1.84%), reinforcing its reliability in temporal 

estimation.  

In contrast, the (SnO2+ZnO) model exhibited a significant drop in R2 

for sensitivity (from 0.66 to 0.53), , accompanied by a higher MAPE 

(2.48%), suggesting limited generalization despite acceptable time 

prediction. 

These findings highlight the superior performance of (SnO2+WO3) in 

sensitivity modeling and (WO3+ZnO) in time prediction, while 

underscoring the need for further optimization in the (SnO2+ZnO) 

configuration.  

Table 2 : Accuracy Metrics for Individual Models 

Sensor 
Dataset 

Type 
Metric Type MAE RMSE) R² MAPE 

SnO₂ + 

WO₃ 

Training/Val

idation 

(Response) 0.017 0.024 0.671 2.043 

Time 3.619 5.725 0.881 1.825 

Test (Unseen 
Ratios) 

(Response) 0.010 0.012 0.918 1.33 
Time 5.449 5.832 0.839 2.78 

SnO₂ + 
ZnO 

Training/Val

idation 

(Response) 0.020 0.028 0.661 2.397 

Time 3.389 5.468 0.889 1.721 
Test (Unseen 

Ratios) 

(Response) 0.019 0.025 0.533 2.48 

Time 3.922 4.773 0.911 1.85 

WO₃ + 
ZnO 

Training/Val
idation 

(Response) 0.019 0.026 0.711 2.369 

Time 5.097 7.755 0.891 2.681 

Test (Unseen 

Ratios) 

(Response) 0.012 0.013 0.920 1.41 

Time 3.486 5.127 0.925 1.84 

A summary of the above is presented in Table (3) 

Table (3): Comparison of the Coefficient of Determination (R2) 

between Training and Test Data for Evaluation Model Stability and 

Accuracy 
Sensor Metric Type Test R² Training R² Generalization Qality 

SnO₂ + 

WO₃ 

(Response) 0.918 0.671 
Excellent (clear 
improvement) 

Time 0.839 0.881 Strong (Slight drop) 

SnO₂ + 

ZnO 

(Response) 0.533 0.661 
Weak (performance 

decline) 

Time 0.911 0.889 Strong (improved) 

WO₃ + 

ZnO 

(Response) 0.920 0.712 
Excellent (stable and 

high) 

Time 0.925 0.891 Best overall 

Based on all of the above, it can be concluded that: 
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The (WO₃ + ZnO) based model initially showed promising 

performance in predicting response time, which can be attributed to 

the nanostructured porous architecture of the sensing layer. A recent 

study demonstrated that the formation of heterojunctions between 

WO3 and ZnO significantly increase the electron depletion layer and 

enhance the generation of active oxygen species on the surface, 

leading to rapid and stable responses to VOCs [10]. 

In contrast, the (SnO₂ + WO₃) composite exhibited more favorable and 

balance behavior in sensitivity prediction. This is due to SnO2 strong 

surface oxygen adsorption and high reactivity with organic 

compounds. Its integration with WO3 creates synergistic charge 

transfer effects and lowers the operating temperature, resulting in 

improved sensor stability and performance. Multiple studies have 

confirmed this synergy, showing that the heterojunctions between 

SnO2 and WO3 directly influence electrical conductivity and chemical 

response [11], while the hierarchical nanostructure enhances 

selectivity and thermal stability [12][13].  

3.8. Interpretation of Nonlinear Relationships Revealed by Neural 

Networks: 

In addition to quantitative performance metrics, the neural network 

models uncovered several non-obvious relationships between system 

inputs and outputs. For instance, the doping ratio exhibited a nonlinear 

effect: while higher doping levels generally increased sensitivity, they 

also led to longer response times due to surface charge accumulation 

and slower recovery dynamics [3]. 

Temperature also demonstrated gas-specific behavior. Ethanol 

showed improved response time at elevated temperatures but reduced 

sensitivity, likely due to accelerated desorption kinetics. In contrast, 

acetone exhibited enhanced sensitivity under higher temperature 

conditions, suggesting stronger adsorption interactions [2][14]. 

These complex interactions were primarily captured by the late fusion 

model, which enabled separate learning pathways for sensitivity and 

response time. This architectural separation allowed the network to 

model distinct dependencies more accurately, thereby enhancing 

interpretability. 

These finding highlight the neural network’s ability to detect hidden 

patterns that are not easily observable through traditional analysis, 

offering valuable insights for sensor design and performance 

optimization [15].    

4. Early Fusion Model: 

Integrating data from multiple sources is a powerful approach to 

enhance the efficiency of predictive models and improve their 

generalization capabilities. 

Following the results obtained from analysing individual modes, we 

proceeded to combine the data to improve network representation, 

accelerate learning, and enhance prediction accuracy. 

Early fusion helps combine data from different sources before 

analysis, making it a useful way to improve model learning. In this 

approach, the input feature from the three sensors were integrated at 

an early stage-prior to model training-forming a unified matrix that 

includes all input variables (temperature, vapour type, sensor type, 

doping ratio). 

Each experimental instance thus represented a complete set of 

information. A neural network was then used to train the model on this 

fused data, allowing the network to learn shared relationships between 

the different sensors and generate a more comprehensive 

representation of the system's behaviour. 

The aim of studying this fusion approach is to improve model 

performance, accelerate learning, and reduce variance resulting from 

dependence on a single sensor. 

Figure (8) shows the training process of the neural network. As shown, 

the final performance (MSE) reached a value of 2.05e-5 after only 17 

training epochs-an impressive decrease compared to the initial value 

of 2.12e+3. The swift reduction in error metrics highlights the model's 

ability to learn effectively within a limited number of training epochs, 

suggesting strong pattern recognition capabilities. The Gradient value 

(0.0122) suggests that the network is still undergoing minor weight 

adjustments. Meanwhile, the Mu coefficient reached 0.001, indicating 

the algorithm's stability and no need for further modifications to the 

training method. The Validation Checks parameter reached its 

maximum value (6), which triggered training termination-meaning the 

model achieved its optimal performance before overfitting occurred. 

 
Fig.8: Neural Network Training Interface (Early Fusion) 

4.1. Performance Curve Analysis of Neural Networks (Early 

Fusion): 

Figure (9) shows the performance curve of the neural network across 

17 training epochs, where the Mean Squared Error (MSE) was tracked 

for the training, validation, and test sets. It is observed that the model 

achieved its best performance on the validation set epoch 11, with an 

MSE value of 17.5373, as indicated by the green circle. 

This behaviour reflects the application of the Early Stopping 

technique, which aims to prevent overfitting by monitoring the 

model’s performance on the validation set. At epoch 11, the model   

has leaned the essential patterns in the data without beginning to 

memorize random details or noise. 

Beyond this point, slight fluctuations in the model’s performance 

begin to appear, as shown in the validation curve, indicating a gradual 

decline in generalization capability. These fluctuations may be 

attributed to: 

Increased model complexity relative to the dataset size. 

Sensitivity of the model to the data distribution in the validation set. 

The onset of overfitting, where training performance improves while 

validation performance deteriorates. 

It is also noteworthy that the test curve remains relatively stable, 

suggesting that the model maintain its predictive ability on unseen 

data, which is a positive indicator of good generalization.    

 
Fig.9: Performance Curves During Neural Network Training (Early 

Fusion) 

4.2. Analysis of the Correlation Coefficient (R) Between Predicted 

Figure (10) shows the correlation coefficient (R), between the target 

values and the predicted outputs of the neural network across the 
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training, validation, and testing phases, as well as the overall 

performance on all data. 

The results indicate that the model demonstrates a strong ability to 

represent the relationship between inputs and outputs. In the training 

phase, the model achieved a perfect match with an R value of 1.00000, 

as shown in Table (3) with the approximation equation: Output = 

1×Target – 0.00036. 

In the validation phase, the model exhibits a behaviour described as 

slight under fitting, with an R value of 0.99928. The slope in the 

approximation equation is less than 1(0.98), with a positive bias 

(+0.2), suggesting that the model did not capture the relationship with 

complete precision, although it remains very close to ideal 

performance. This minor deviation may be attributed to the data 

distribution or the limited size of the validation set. 

In the testing phase, the model maintains a good fit, with an R value 

of 0.99929 and a slope of 1, accompanied by a small negative bias (-

0.27). 

This reflects the model’s ability to generalize and predict accurately 

on unseen data, which is a key indicator of robust generalization. 

Considering the overall performance across all data, the model 

achieved an R value of 0.99976, with a near-perfect approximation 

equation: Output=1×Target-0.02. This indicates an excellent balance 

between learning and generalization, confirming that the neural 

network is capable of accurately modelling the relationship between 

inputs and outputs, with only minimal deviations that do not 

significantly affect predication quality. 

 
Fig.10: Correlation Coefficients (R) (Early Fusion) 

Detailed results corresponding to each phase are provided in Table (4). 

Table 4: Correlation Coefficients (R) (Early Fusion) 

Phase 
Correlation 

Coefficients (R) 
Approximation Equation 

General 

Observation 

Training 1 Output=1×Target-0.00036 Perfect match 
Validation 0.99928 Output=0.98×Target+0.2 Slight underfitting 

Test 0.99929 Output=1×Target-0.27 Good match 

All 0.99976 Output=1×Target-0.02 
Excellent overall 

performance 

4.3. Analysis of  Training Indicators (Gradient, Mu, Validation 

Checks) (Early Fusion): 

Figure (11) shows the performance of three key dynamic indicators 

during the training of the early fusion model (Gradient, Mu, Validation 

Checks). 

Collectively, these indicators suggest that the model learned with 

relative effectiveness over 17 training epochs. The gradient value 

gradually decreased, reaching 0.012159 by the final epoch, indicating 

that the model was approaching convergence and that weight updates 

were stabilizing. 

However, the fact that the gradient did not reach very small values 

(e.g.<1e-4) implies that the model had not yet achieved optimal 

maturity and may still hold potential for further improvement. On the 

other hand, the update parameter Mu exhibited stable behavior, 

settling at 1e-5 by the end of training, which is a positive sign of 

learning stability and reduced need for significant parameter 

adjustments. The number of validation checks reached 6 in the final 

epoch a relatively high count that reflects repeated assessments of the 

model’s performance on the validation set without notable 

improvement. This may indicate that the model was entering a 

saturation phase, where additional training no longer yields 

meaningful gains, Such behavior triggers the early stopping 

mechanism and serves as a cautionary signal for potential overfitting. 

According, it can be concluded that the model demonstrated stable and 

effective learning behavior, yet did not reach full maturity, allowing 

for further optimization through parameter tuning or reevaluation of 

the training duration to achieved more ideal performance. 

 
Fig. 11: Training Indicators (Gradient, Mu, Validation Checks) 

(Early Fusion) 

4.4. Analysis of Error Histogram (Early Fusion): 

Figure (12) shows the error histogram resulting from the difference 

between the target values and the predicted outputs, distributed across 

20 bins covering a range of errors approximately between  

(-12.66 to -10.92) . 

It is observed that the majority of errors are concentrated around zero, 

with the highest frequency occurring in bins very close to the zero 

point. This indicates that the early fusion model is capable of 

producing highly accurate predictions with notable stability. The 

balance distribution of errors reflects the absence of systematic bias in 

the predictions, suggesting that the model does not tend to 

overestimate or underestimate, but rather exhibits a symmetrical 

behavior around the ideal value. Moreover, the narrow spread and tight 

clustering of errors indicate low variance in the outputs, which is a 

strong sign of model stability and learning efficiency. Notably, the 

errors from the training, validation, and testing sets all fall within the 

same range, demonstrating consistency across different learning phase 

and reinforcing confidence in the model’s generalization capability. 

Accordingly, Figure (12) serves as both a visual and statistical 

confirmation of the neural network’s effectiveness in accurately 

modeling the relationship between inputs and outputs, supporting its 

suitability for practical applications and scientific publication.  

 
Fig.12: Error Histograms (Early Fusion) 
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4.5. Analysis of Predicted vs. Actual Value Alignment (Early 

Fusion): 

Figure (13) shows a precise comparison between the actual and 

predicted values generated by the early fusion model for both response 

and response time. The two plots clearly demonstrate that the model 

exhibits excellent effectiveness in representing the relationship 

between inputs and outputs, with the curves showing near-perfect 

alignment and only minor fluctuations that do not significantly affect 

prediction accuracy. In the case of response, the model closely follows 

the true pattern within a range of approximately (0.7 to 1.0), indicating 

its ability to capture subtle variations in sensory behavior. For 

response time, the predicted values consistently mirror the actual 

values within a range of (150 to 250), reflecting the model’s reliable 

performance in forecasting time-related variables, The slight 

deviations observed in both plots may be attributed to noise in the 

original data or the model’s sensitivity to specific individual cases, yet 

they do not indicate any systematic learning deficiency. 

The high degree of agreement between actual and predicted values, 

along with the preservation of overall trend directions, serves as strong 

evidence of the model’s generalization and extrapolation capabilities, 

reinforcing its suitability for practical application and scientific 

publication.    

 
Fig.13: Early Fusion Model Performance Based on Actual vs. 

Predicted Values 

a. Scientific Formulation for Publication: Performance 

Analysis of the Early Fusion Model:  

Table (5) shows the performance evaluation of the early fusion model 

in predicting both response and response time across two phases 

(training/validation and testing using unseen ratios). Four key 

statistical metrics were employed to assess the model’s accuracy 

(Mean Absolute Error (MAE), Root Mean Square Error (RMSE), 

Coefficient of Determination (R2), and Mean Absolute Percentage 

Error (MAPE)), providing a comprehensive understanding of the 

model’s learning and generalization capabilities. 

In the training /validation phase, the model demonstrated notable 

accuracy in predicting response values, with MAE reaching 0.05338 

and RMSE approximately 0.06589, indicating relatively low absolute 

error. The R2 value of 0.66294 suggests that the model explain over 

66% of the variance in the sensory data. Additionally, the MAPE of 

3.3368% reinforces the model’s reliability for practical applications. 

For response time, although the performance was reasonably good, the 

MAE and RMSE values were higher (2.51012 and 3.82540, 

respectively), reflecting greater variability in temporal predictions. 

Nevertheless, the R2 of 0.67986 and MAPE of 5.4648% remain within 

acceptable ranges, indicating the model’s ability to capture temporal 

relationships. 

In the test phase with unseen ratios, the model exhibited strong 

generalization ability in predicting response, as error metrics 

significantly decreased (MAE=0.0205, RMSE=0.0270), and R2 

increased to 0.6984, indicating improved variance explanation. 

The MAPE of 2.51% further confirms high prediction accuracy under 

novel conditions. In contrast, the model faced greater challenges in 

predicting response time, with MAE and RMSE rising to 9.0461 and 

12.0513, respectively, and R2 dropping to 0.5586, suggesting a relative 

weakness in explaining temporal variance. 

However, the MAPE of 4.61 remains within a reasonable range, 

reflecting acceptable performance given the complexity of the time 

variable.    

Table 5: Accuracy  Indicators for the early fusion model 
Sensor Dataset Type Metric Type MAE RMSE R² MAPE 

Early 

fusion 

Training/Vali

dation 

(Response) 0.053 60.06  30.66  %3.33 7 

Time 2.510 3.825 800.6  %5.46 5 

Test (Unseen 

Ratios) 

(Response) 0.021 0.027 0.698 2.51% 

Time 9.046 12.05 0.559 4.61% 

5. Late Fusion: 

Late fusion is also considered an effective strategy for combining 

information after it has been independently processed by multiple 

models or subnetworks. The late fusion model allows for in-depth 

examination of each output and achieves an excellent balance between 

predictive accuracy and training stability. 

In this study, a simple late fusion approach was adopted to improve 

the prediction accuracy of both the response and response time. To 

accomplish this, two separate neural networks were trained, each 

designated for a distinct prediction task, using the same shared input 

dataset. 

Figure (14) shows the training process of the neural network in the late 

fusion model. As shown, the model reached its best performance at 

MSE=0.516 compared to its high initial value of 1.57e+3, after a 

limited number of training epoch(13). 

This significant drop indicates that the model learned rapidly and 

effectively. The current Gradient value (1.46) suggests the model is 

still undergoing gradual refinement of weights. Meanwhile, the Mu 

coefficient of 0.1 indicates that the algorithm maintained a slight 

adjustment to improve performance without drastic changes to the 

updata mechanism. The Validation Checks parameter reached its 

maximum value (6), which led to automatic early stopping, thereby 

preventing overfitting. Overall, the late fusion model demonstrated 

high training efficiency and numerical balance across learning 

indicators. 

 
Fig.14: Neural Network Training Interface (Late Fusion) 

5.1. Analysis of Neural Network Performance Curves: 

Figure (15) shows the performance curves of the late fusion model 

across the training, validation, and testing phases, with the Mean 

Squared Error (MSE) tracked over 13 training epochs. The model 

achieved its best validation performance at epoch 7, recording the 

lowest MSE value of 8.5057. which indicates that it reached an 

optimal learning state relatively early. This early drop in error reflects 

the efficiency of the model’s architecture in capturing the fundamental 
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patterns in the data without requiring extensive training, highlighting 

the effectiveness of its internal design. 

Meanwhile, the training curve continues to decline steadily throughout 

the learning process, suggesting that the model consistently improves 

its internal weights and reduces error on the training data, without 

signs of saturation or stagnation. However, a slight rise in the 

validation curve after epoch 7 signals the onset of overfitting, where 

the model begins to adapt too closely to the training data at the expense 

of its generalization ability. Although this increase is modest, it 

warrants caution in selecting an appropriate early stopping point to 

preserve predictive accuracy on unseen data. 

The testing curve remains consistently higher than the validation 

curve, indicating that the model did not generalize perfectly to new 

data. This gap between validation and testing performance reflects a 

generalization gap a common phenomenon in models that learn well 

from original data but struggle with unfamiliar case. 

Nevertheless, the overall stability of the curves and the absence of 

sharp fluctuations suggest that the model maintained balances training 

behaviour and achieved its lowest error at a suitable point, reinforcing 

its reliability and highlighting its potential for further improvement 

through regularization techniques or enhanced training data diversity. 

 
Fig.15: Performance Curves During Neural Network Training (late 

Fusion) 

To address the observed signs of overfitting and improve 

generalization capability, future studies are encouraged to apply 

regularization strategies such as Dropout, L2 weight decay, or cross-

validation. These techniques can help stabilize learning, reduce 

variance, and enhance the robustness of multi-output neural 

architectures under diverse experimental conditions. 

5.2. Analysis of Correlation Coefficient (R) Between Predicted and 

Actual values: 

Figure (16) shows four regression plots that illustrate the performance 

of the late fusion model across the training, validation, testing, and 

overall phase. These plots depict the relationship between the target 

values and the model’s predicted outputs, each represented by a linear 

approximation equation and a correlation coefficient (R) that 

quantifies the strength of the linear fit. This type of analysis serves as 

a powerful tool for evaluation how accurately the model simulates the 

true behavior of the data across different stages. 

During the training phase, the model achieved an exceptionally high 

correlation coefficient (R=0.99645), with a regression equation of 

Output = 0.95×Target+ 7.4 . 

This indicates near-perfect alignment between predicted and actual 

values, as the slope approaches unity and the intercept remains 

minimal. Such performance reflects the model’s strong ability to learn 

the internal patterns of the data with remarkable precision. 

In the validation phase, the model maintained high accuracy, with 

R=0.99042 and a regression equation of Output = 1 ×Target+ 0.43 . 

This equation is nearly ideal, suggesting that the model not only 

learned effectively but also remained stable when exposed to unseen 

data that was not directly used during training. 

In contrast, the testing phase revealed a relative decline in 

performance. 

The correlation coefficient dropped to 0.93224, and the regression 

equation shifted to Output = 0.74×Target+ 47 . The reduced slope and 

increased intercept indicate that the model struggled to generalize 

perfectly to entirely new data, revealing a generalization gap that may 

require future improvements in model architecture or training data 

diversity. 

When considering the overall performance across all phases, the 

model achieved a strong correlation (R=0.99328) with a regression 

equation of Output = 0.94×Target+ 9.2 . 

This demonstrates that the model maintained consistent and reliable 

behavior in representing the input-output relationship, even when 

aggregation across varied data conditions. 

Based on these findings, it can be concluded that the late fusion model 

exhibited excellent performance during training and validation, with 

high precision and stability. 

While the testing phase showed room for improvement in 

generalization, the overall consistency in regression slopes and the 

high correlation values across phases confirm the model’s balanced 

learning behavior.    

 
Fig.16: Correlation Coefficients (R) (Late Fusion) 

Table (6) provides a summary of the output results.  

Table 6: Correlation Coefficients (R) (Late Fusion) 

Phase 
Correlation 

Coefficients (R) 

Approximation 

Equation 

General 

Observation 

Training 0.99645 Output=0.95×Target+7.4 Very high 

Validation 0.99043 Output=1×Target+0.43 High and precise 

Test 0.93224 Output=0.74×Target+47 
Lower accuracy, 

needs improvement 

All 0.99328 Output=0.94×Target+9.2 
Strong overall 

performance 

5.3. Analysis of Training Indicators (Gradient, Mu, Validation 

Checks) (late Fusion): 

Figure (17) shows a comprehensive view of the training dynamics of 

the late fusion model across 13 epochs, highlighting three key 

indicators: 

Gradient descent behavior, the adaptive learning rate parameter (Mu), 

and validation checks. Together, these plots offer valuable insight into 

the model’s internal optimization process and its ability to maintain 

balanced learning. 

The first plot illustrates the evolution of the gradient values, which 

began at a relatively high level and decreased progressively to 1.457 

by epoch 13. 

This steady decline reflects the model’s successful optimization of its 

internal weights, with no abrupt fluctuations or instability. Such 

behavior is indicative of a well-structured learning process, where the 

model continuously minimizes the error function through smooth 

gradient descent, avoiding erratic updates that could compromise 

convergence. 

The second plot tracks the Mu parameter, which represents the 

adaptive learning rate within the training algorithm. Mu increased 

gradually to a value of 0.1 by the final epoch, remaining within the 
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active adjustment range. This suggests that the model was still refining 

its parameters but had begun approaching a stable state. The moderate 

value of Mu indicates that the algorithm was neither stagnant nor 

overly aggressive, allowing for controlled and meaningful updates 

without requiring drastic reconfiguration. 

The third plot shows the progression of validation checks, which 

reached the maximum threshold of 6 at epoch 13. This triggered the 

early stopping mechanism, a safeguard designed to halt training once 

the model achieves optimal validation performance. The activation of 

early stopping at this point confirms that the model had reached its 

peak generalization capacity before entering the overfitting zone, 

preserving its ability to perform well on unseen data. 

Taken together, these indicators demonstrate that the late fusion model 

exhibited a highly balanced and effective training behavior. The 

gradual reduction in gradient values, the controlled rise in Mu, and the 

timely activation of early stopping all point to a model that leaned 

efficiently, stabilized appropriately, and avoided overfitting. This 

reinforces the model’s robustness and reliability. 

 
Fig.17: Training Indicators (Gradient, Mu, Validation Checks) (late 

Fusion) 

5.4. Analysis of Error Histogram (Late Fusion): 

Figure (18) shows the error distribution plot for the late fusion model, 

where prediction errors (defined as the difference between target 

values and model outputs) are grouped into 20 bins across the training, 

validation, and testing datasets. This type of analysis provides a 

precise assessment of the model’s predictive accuracy and its ability 

to generalize across different data subsets. 

The plot reveals that the majority of errors in the training data are 

concentrated around the bin centered at 0.24, which lies closest to the 

zero-error line (indicated by the vertical orange line). This dense 

clustering near zero reflects the model’s high accuracy in prediction, 

demonstrating its ability to represent the data with minimal deviation. 

Such behavior indicates that the learning process effectively 

minimized discrepancies between actual and predicted values. 

The overall error range spans from (-5.277 to 12.19), which is 

relatively moderate and suggests that the model did not produce 

extreme or erratic predictions. Moreover, the distribution of errors 

across the training (blue), validation (green), and testing (red) sets 

appears relatively balanced, indicating that the model performance 

consistently across different data groups and does not over fit to a 

specific subset. 

This balance in error distribution, combined with the central 

concentration near zero, serves as strong evidence that the model is 

not biased or over fitted. Instead, it exhibits stable and well-regulated 

behavior, reinforcing its reliability for practical applications. 

Additionally, the absence of skewed distribution or heavy tails 

suggests that the model is not disproportionately affected by or rare 

case.    

 
Fig.18: Error Histogram (late Fusion) 

5.5. Analysis of Actual vs. Predicted Value Alignment: 

Figure (19) shows a precise visual comparison between the actual and 

predicted values generated by the late fusion model across two distinct 

outputs: response and response time. The plots reveal a strong visual 

alignment between the solid black lines (actual values) and the dashed 

lines (predicted values), demonstrating the model’s ability to 

accurately simulate the true behavior of the data. 

In the upper plot, representing the response output, the model closely 

tracks the variations in the actual data, with the predicted values (blue 

dashed line) showing near-perfect alignment with the true values 

(black line). This strong visual match indicates that the model 

successfully captured the sensory relationship between inputs and 

outputs without significant deviation, reinforcing its reliability in 

predicting perceptual behavior. 

In the lower plot, which represents response time, the model also 

exhibits balanced visual performance, The predicted values (red 

dashed line) closely follow the actual values across different cases. 

Although time prediction is typically more challenging due to higher 

variability, the model maintained a commendable level of visual 

accuracy, suggesting that its learning mechanism effectively captured 

temporal patterns. 

This visual consistency across both outputs serves as strong evidence 

of the model’s generalization capability. The performance was not 

limited to a specific dataset but extended to unseen case, 

demonstrating robustness and adaptability. Moreover, the uniformity 

in prediction quality across different output types reflects internal 

balance in the model’s architecture, further supporting its suitability 

for multidimensional applications. 

Based on these observations, it can be concluded that the late fusion 

model exhibited visually balanced and effective performance, with 

clear predictive accuracy and generalization ability. 

 
Fig.19: Late Fusion Model Performance Based on Actual vs. 

Predicted Values 
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5.6. Scientific Formulation for Publication: Performance Analysis 

of the Late Fusion Model: 

Table (7) shows the performance evaluation of the early fusion model 

in predicting both response and response time across two phase 

(training/validation and testing using unseen ratios). 

Table 7 :Accuracy Indicators for the Late Fusion Model 

Sensor Dataset Type Metric Type MAE RMSE R² MAPE 

Late 

fusion 

Training/ 

Validation 

(Response) 20.00  40.00  0.996 0.19 %  

Time 2.455 3.356 0.978 1.23 %  

Test (Unseen 

Ratios) 

(Response) 0.014 0.019 0.841 1.76 %  

Time 7.36 10.11 0.674 3.76 %  

The performance of the late fusion model was evaluated using a set of 

standard statistical metrics, including (MAE, RMSE, R2, MAPE). 

These metrics were applied to both the training/validation dataset 

(seen data) and the test dataset (unseen data) to assess the model’s 

generalization ability and predictive accuracy across different 

contexts. 

Results indicated that the model achieved high performance on the 

seen data. For the response variable, MAE was 0.00166 and RMSE 

was 0.00362, with a very high R2 value of 0.99603, suggesting that the 

model explains over 99% of the variance in the data. The MAPE was 

extremely low (0.19%), reflecting excellent predictive precision. For 

the time variable, the performance was also satisfactory, with MAE of 

2.45502, RMSE of 3.35605, R2 of 0.97821, and MAPE of 1.23%. 

In contrast, the model showed a noticeable decline in performance 

when applied to unseen data. For the response variable, MAE 

increased to 0.0142 and RMSE to 0.0194. while R2 dropped to 0.8417, 

indicating reduced explanatory power. MAPE also rose to 1.76%. For 

the time variable, the performance was significantly lower, with MAE 

of 7.36, RMSE of 10.11, R2 of 0.6749, and MAPE of 3.76%. 

These finding highlight clear challenges in the model’s generalization 

capability, particularly in predicting time under unseen conditions. It 

is recommended to revisit the data distribution used during training 

and consider applying regularization techniques such as Dropout or 

Early Stopping. Additionally, redesigning the model architecture may 

enhance its generalization ability and improve performance in unseen 

environments.   

Part 2: Comparative Analysis of the Three Neural Models for 

Predicting Sensors Response and Response Time 

Accurate and efficient prediction of response and response time in gas 

sensor depends on designing neural models that can precisely 

represent output behavior both numerically and visually. Given these 

considerations, a structured comparison was carried out to evaluate the 

performance of the three neural models previously examined-namely, 

the individual models, early fusion, and late fusion-in order to identify 

the most reliable and effective architecture. 

✓ Numerical and Training Performance Indicators for the 

Models (Individual-Early Fusion-Late Fusion): 

The numerical and training performance indicators for the individual, 

early fusion, and late fusion models are summarised in Table 8. 

Table 8: Numerical and Training Performance Indicators 

Sensor/Model 
Best MSE 

Achieved 
Epoch 

Final 

Gradient 

Final 

Mu 

Validation 

Checks 

(SnO2+WO3) 0.502 3 1.22e-12 1e-11 5 
(SnO2+ZnO) 4.999 5 5.58e-13 1e-11 3 

(WO3+ZnO) 7.285 14 0.008 1e-5 6 
Early Fusion 17.537 11 0.012 1e-5 6 

Late Fusion 8.506 7 1.46 0.1 6 

✓ Analysis of Correlation Coefficient (R) and Regression 

Equations for the Models (Individual-Early Fusion-Late 

Fusion): 

The correlation coefficients (R) and regression equations for the 

individual, early fusion, and late fusion models are presented in 

Table 9. 

Table 9: Correlation Coefficient (R) and Regression Equations 

Sensor/Model 
Prominent Regression 

Equations 

Highest (R) 

Value 

(SnO2+WO3) Output=1×Target+0.01 0.99999 
(SnO2+ZnO) Output=1×Target+0.011 1 

(WO3+ZnO) Output=1×Target-2.8e-6 1 

Early Fusion Output=1×Target-0.00036 1 
Late Fusion Output=0.95×Target+7.4 0.99645 

✓ Error Distribution Analysis (Error Histogram) for the 

Models (Individual-Early Fusion-Late Fusion): 

The error distribution analysis for the individual, early fusion, and late 

fusion models is presented in Table 10. 

Table 10: Error Distribution 

Sensor/Model 
Error Concentration 

Location 
Overall Distribution 

Evaluation 

(SnO2+WO3) -0.103 
Highly accurate and 

balanced 
(SnO2+ZnO) -0.048 Slight adjustment needed 

(WO3+ZnO) +0.3861 Clear deviation 

Early Fusion -0.2483 Accurately distributed 
Late Fusion +0.24 Low and balanced error 

✓ Visual Analysis of Actual vs. Predicted Value Alignment for 

the Models (Individual-Early Fusion-Late Fusion): 

The visual analysis of actual versus predicted value alignment for the 

models is summarised in Table 11. 

Table 11: Response and Response Time Matching Quality 

Sensor/Model 
Response 

Match 

Response Time 

Match 
General Observation 

(SnO2+WO3) Very High Excellent Strong predictive model 

(SnO2+ZnO) Very Good 
Good with minor 

deviation 
Slight fluctuation 

(WO3+ZnO) 
Relatively 

Good 

Moderate with clear 

fluctuation 
Needs improvement 

Early Fusion Very High Good to Very Good 
Excellent visual balance, 

with minor variability 

Late Fusion Very High Good to Very Good 
Strong response match 

with slight time deviation 

❖ Analysis of prediction Accuracy Discrepancies between 

Sensitivity and Response Time across all models: 

A comparative evaluation of the three neural architectures (individual 

models, early fusion, late fusion) reveals a consistent discrepancy in 

prediction accuracy between the two target variables: sensitivity and 

response time. This indicates that the models did not predict both 

variables with equal precision. 

In the individual models, the (SnO2+WO3) configuration 

demonstrated superior accuracy in predicting sensitivity (R2 = 

0.91791) compared to response time (R2 = 0.83882). Conversely, the 

(WO3+ZnO) model achieved higher accuracy in predicting response 

time (R2 = 0.92471) than sensitivity (R2 = 0.91974). The (SnO2+ZnO) 

model showed the weakest generalization for sensitivity (R2 = 

0.53324), despite maintaining strong performance in response time 

prediction (R2 = 0.91068). 

The early fusion model exhibited acceptable performance in predicting 

response time (MAE=2.51012), but its accuracy in sensitivity 

prediction was notably lower (MAE=0.05338). This suggest that early 

fusion may introduce representational overlap between tasks, limiting 

the model’s ability to specialize in each output.   

In contrast, the late fusion model demonstrated the most balanced 

performance, achieving exceptionally high accuracy in sensitivity 

prediction (MAE=20.00166) and relatively strong results for response 

time (MAE=2.45502). This supports the effectiveness of task 

separation in enhancing predictive precision across distinct outputs. 

Potential causes for this discrepancy include: 

•  Variable nature: Sensitivity tends to follow more stable 

patterns based on material properties, while response time is 

influenced by dynamic factors such as adsorption/desorption rates and 

internal diffusion, making it more volatile and harder to model. 

•  Model architecture: Task-specific models (late fusion) allow 

for deeper specialization, whereas unified models (early fusion) may 

suffer from representational interference. 

•  Data distribution: Sensitivity data may exhibit more 

consistent trends, facilitating learning, while response time data may 

contain greater variability across samples. 

Future studies should consider designing neural architectures that 

incorporate task (specific optimization) such as modular subnetworks 

or late fusion strategies to ensure balanced predictive performance 

across multiple outputs and improve model reliability in real-world 

sensing applications. 

❖ Statistical Analysis of Accuracy Indicators (MEA, RMSE, 

R2, MAPE) for the Models (Individual-Early Fusion-Late 

Fusion): 

The individual model based on the (SnO2+WO3) sensor demonstrated 
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superior numerical accuracy in sensitivity prediction, achieving the 

lowest MAE and RMSE values on unseen data, along with a 

significant improvement in R2 from 0.67 to 0.92. 

Its MAPE value of 1.33% further confirms its reliability in 

extrapolating to novel doping ratios. In contrast, the (WO3+ZnO) 

model showed the highest R2 (0.92471) and lowest MAPE (1.84%) for 

response time prediction, indicating strong temporal modelling 

performance. The (SnO2+ZnO) model, however, exhibited a notable 

drop in R2 for sensitivity (from 0.66 to 0.53) and a higher MAPE 

(2.48%), Suggesting limited generalization despite acceptable time 

prediction accuracy. 

The early fusion model yielded balanced performance in training, with 

moderate MAE and RMSE values and R2 scores above 0.66 for both 

outputs. However, its generalization on unseen data was weaker, 

particularly for response time, where RMSE rose to 12.05and R2 

dropped to 0.5586. This suggests that early fusion may introduce 

representational overlap between tasks, limiting specialization and 

reducing predictive precision. 

In contrast, the late fusion model achieved the most consistent and 

balance performance across both outputs. It recorded the lowest MAE 

(0.00166) and RMSE (0.00362) for response prediction in training, 

with an exceptionally high R2 of 0.99603 and a minimal MAPE of 

0.19%. While its performance declined on unseen data, the model 

maintained acceptable accuracy levels, with R2 values of 0.8417 for 

response and 0.6749 for response time, and MAPE values of 1.76% 

and 3.76%, respectively. 

Overall, the statistical indicator confirm that the late fusion model 

offers the best trade-off between precision and generalization, making 

it the most suitable architecture for multi-output prediction tasks. The 

individual (SnO2+WO3) model remains optimal for single-output 

sensitivity prediction, while the early fusion model, despite its training 

stability, requires further refinement to improve generalization on 

unseen data. 

❖ Comparison of Proposed Models with Existing Approaches 

for Predicting Sensitivity and Response Time: 

A review of prior literature reveals that most AI-based studies have 

focused on gas classification or leak detection tasks using techniques 

such as early fusion, convolutional neural networks (CNN), recurrent 

architectures (GRU, Bi-LSTM), or multitask systems. While these 

approaches achieved high classification accuracy, they did not 

explicitly address the quantitative prediction of two core sensor 

performance metrics: sensitivity and response time. 

In contrast, the present study introduces a novel contribution by 

developing neural network models capable of accurately predicting 

both variable using three distinct architectures ( individual, early 

fusion, late fusion). The results demonstrate that the late fusion model 

outperforms existing methods in terms of precision (MAE, RMSE, 

R2), offering balanced and stable predictions for both outputs. Unlike 

previous studies, this model separates tasks effectively and provides 

detailed quantitative evaluation, which enhances its generalization 

capability and practical relevance. 

Therefore, the proposed models go beyond conventional AI 

applications by offering a robust framework for multi-output 

prediction in intelligent sensing system, representing a meaningful 

advancement in both research and industrial contexts. 

6. Limitations of the study: 

We acknowledge several limitations in the current study: 

First, all experiments were conducted at a fixed gas concentration of 

500 ppm, which may not reflect sensor behaviour under varying 

exposure levels. 

Second, only two gas types (acetone, ethanol) were evaluated, limiting 

the generalizability of the models to broader chemical environments. 

Third, the operating temperature were restricted to (2500C, 3500C), 

which may not capture performance dynamics at lower or higher 

thermal conditions. 

Additionally, environmental factors such as humidity, cross-gas 

interference, and long-term drift were not considered in this phase. 

These limitations are recognized as areas for future expansion to 

enhance model robustness and practical applicability.    

7. Conclusion  

This study successfully demonstrated the application of artificial 

intelligence (specifically neural network architectures) in predicting 

two critical performance metrics of gas sensors: sensitivity and 

response time. Three sensor configurations (SnO₂+WO₃, SnO₂+ZnO, 

WO₃+ZnO) were fabricated and evaluated under controlled 

conditions, and three modelling strategies were implemented: 

individual models, early fusion, and late fusion. The results revealed 

that the SnO₂+WO₃ sensor model achieved the highest accuracy in 

sensitivity prediction, while the WO₃+ZnO model excelled in response 

time estimation. The late fusion architecture emerged as the most 

balanced and reliable approach, offering superior generalisation and 

predictive stability across both outputs. In contrast, the early fusion 

model showed good training performance but limited generalisation, 

particularly for time prediction. Statistical indicators (MAE, RMSE, 

R², MAPE), regression analysis, error histograms, and visual 

alignment plots collectively confirmed the robustness of the late fusion 

model and its suitability for multi-output prediction tasks. 

Moreover, the neural networks uncovered nonlinear relationships 

between doping ratios, temperature, and gas type, providing deeper 

insights into sensor behaviour that traditional analysis could not 

reveal. 

8. Future Work: 

Building on the current findings, future work will focus on expanding 

the scope and applicability of the proposed models.  

First, we plan to explore more advanced neural architectures such as 

convolutional neural networks (CNNs). recurrent neural networks 

(RNNs), and GRU-based models to capture temporal and spatial 

dependencies in sensor data [7]. 

Second, the study will be extended to include a broader range of gases, 

including ammonia, nitrogen dioxide, and volatile organic compounds 

(VOCs), to improve generalizability across industrial and 

environmental contexts. 

Third, real-world datasets will be incorporated to evaluate model 

robustness under uncontrolled conditions, including variable 

humidity, temperature fluctuations, and cross-gas interference [16]. 

Finally, application-specific optimization will be pursued, such as 

tailoring models for wearable sensors, smart city monitoring, and food 

safety applications, where rapid and reliable gas detection is critical 

[17]. These directions aim to enhance both the scientific depth and 

practical relevance of intelligent gas sensing system. 
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