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Genetic Algorithim (GA). In the manufacturing field, it is essential to determine the optimum operating conditions of a
Hardness. process as well as the best values for the system input parameters. In other words, it is necessary
Laser Cladding Process. to identify the best possible solutions for the system variables in order to minimise the
Layer Thickness. operational cost and maximise product quality simultaneously. To address these challenges, a
Radial Basis Function Neural - Radial Basis Function Neural Network (RBFNN) was employed to model the laser cladding
Network (RBFNN). process and predict the hardness and layer thickness of the deposited layers. The operational

data set was collected from Talleres Mechanics Comas (TMC). Additionally, a Genetic
Algorithm (GA) framework for single- and multi-objective optimisation of the laser cladding
process is presented in this paper. The main objective of this technique is to identify optimal
values for three input variables Travel Speed (TS), Powder Feed Rate (PFR), and Laser Power
(LP) to assist in the optimal design of the laser cladding process. Simulation results
demonstrated that very good optimisation solutions were obtained for all three process
parameters (TS, PFR, and LP).
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1. Introduction systems under the Evolutionary Algorithm (EA) paradigm is the
One of the most promising methods in the field of natural adaptive Genetic Algorithm (GA), which has gained considerable attention due
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to its adaptability and efficiency in complex system optimisation [1].
Furthermore, GA is one of the most effective and flexible techniques
for system identification and has been applied extensively across
numerous scientific domains [2,3]. GA provides robust sampling of
the solution space and does not require gradient information from the
model, which is an advantage over analytical modelling techniques
[4]. Moreover, because GA uses objective function information
directly and does not require additional auxiliary information, it can
handle both single- and multi-objective optimisation problems [5].
Multi-objective optimisation is often applied to achieve either
maximum reliability or quality, or to minimise production costs [6]. A
decision maker can select an appropriate solution using the Pareto
front, which is a curve or surface representing the best trade-off
solutions between conflicting objectives [7]. Therefore, identifying the
Pareto front, composed of Pareto-optimal solutions, is a primary goal
of multi-objective optimisation. The objective functions in multi-
objective optimisation typically conflict with one another.

Sourabh Katoch et al. [8] analysed recent developments in GA and
reviewed the variants of GA that attracted the most attention in the
research community. Their study detailed the widely used methods,
their implementations, and discussed future prospects for genetic
operators, fitness functions, and hybrid algorithms. Golap Chowdhury
and Gour Roy [9] applied GA to predict rate parameters from
experimental data during the solid-state reduction of iron ore in the
presence of graphite. Their findings indicated that the reduction
process involves three main stages: haematite to magnetite, magnetite
to wustite, and wustite to iron. Mehmet Fatih Dilekoglu [10]
introduced GA for optimising phenol adsorption on grapefruit and
banana peels, using GA to solve the four-parameter Jeager-Erdoes
equation without making assumptions. This equation provided the
most accurate fit to experimental data among the considered models.
H. Abarghouee et al. [11] employed GA to calibrate three semi-
empirical models describing the superposition effect of work
hardening and dynamic recovery or recrystallisation on flow stress.
The aim was to minimise the discrepancy between model predictions
and experimental data. The results demonstrated that the models
accurately estimated flow stress and agreed closely with experimental
measurements.

As previously mentioned, system identification techniques can
determine unknown model parameters by minimising the difference
between experimental data and model outputs. Among the dependable
and adaptable techniques widely used in scientific research, GA stands
out. In this study, a Radial Basis Function Neural Network (RBFNN)
is employed to model the laser cladding process and predict outputs
such as layer thickness and hardness. GA is subsequently utilised to
determine the optimal operational parameters Travel Speed (TS),
Powder Feed Rate (PFR), and Laser Power (LP) while simultaneously
minimising two conflicting objectives: hardness and layer thickness.

2. Methodology

This section presents single and multi-objective evolutionary
algorithms to derive single or a set of optimal operation policies for
laser cladding process case using experimental data from Talleres
Mechanics Comas (TMC). The main goal in optimization is to find a
single or set of feasible solutions which correspond to optimal values
of one or more objectives. Command line in Matlab has been utilized
in this research to run the optimization. Therefore, an objective
function and its corresponding constraints must be defined. Also,
appropriate  settings such as population size/type, initial
population/range, fitness scaling function, selection function, elite
count, crossover fraction/function, mutation function, and stopping
criteria can be chosen otherwise the default setting will be applied by
Matlab. Moreover, GA has been used as an optimization tool that
searches for the optimal solutions for the laser cladding process
variables which are: Travel speed (TS), Powder Fed Rate (PFR) and
Laser Power (LP) where the information obtained from the RBFNN
was used to build the GA’s chromosomes. The variables that need to
be optimised are V' to V;. The initial population (/P) for the GA can
be defined by Equation 1.

IP = Ny, X Ps (D
Where:
N,,: The number of variables.
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Ps: The size of the population

In order to apply the single or multi-objective optimization RBFNN
model must be trained and tested first to predict Hardness and Layer
Thickness. The calculated centers (c), sigma (o) and weights (@)
values from the RBFNN model are used to define the structure of the
chromosome. The GA evaluates the objective function by minimizing
the error between the calculated neural network output and desired
output. In TMC case, the GA optimization was applied for single-
objective and multi-objective problems. The GA strategy applied for
single and multi-objective problems is shown on Fig. 1. In the
following sections, hardness and layer thickness modelling using
RBFNN, strategy of single and multi-objective optimization is
presented. Then the discussions of simulation results are discussed.

3. Hardness and Layer Thickness Modelling using RBFNN
RBFNN model is presented to predict the outputs of hardness and
layer thickness. Table (1) shows the input data sets and the output
targets provided by TMC. This data set was used to train and test the
RBFNN- self-learning-system (SLS) model. Moreover, cross-
validation approach was applied to test and verify the performance of
the model. Consequently, the data set was divided into two groups, the
first group (70%) for training and the second group (30%) for testing.
Figs. 2 to 5 shows the prediction performance for training and testing
for hardness and layer thickness. It can be seen from the simulation
results of training and testing the RBFNN model were very good; in
general, a good prediction for hardness and layer thickness was
achieved. Figs. 6 to 9 illustrates the behavior of the model using 3-D
plots. The Mean Absolute Error (MAE) between the outputs and the
targets is very small. The MAEs between the outputs are shown in

Table (2).
Y

Neural network model

\

Save the training data (c, o, ®)

v

Generate parents randomly within
the specific variable ranges

v

Evaluate fitness of each member of
population by minimising the objective
function

v

Classify the individuals into fronts;
assign frank

\4

Crossover and Mutation

If gen< maxgen

\L No

Output solution

Fig. 1: Flowchart of the GA single and multi-objective optimization
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Table 1: List of experiments provided by Talleres Mechanics Comas

(TMC)
Radial Basis Function Neural Network Output Tareet
(RBFFNN) inputs data (process condition) P g
Travel Speed Powder Fed Laser Hardn- | Thicn-
(TS) Rate (PFR) Power (LP) ess ess
(mm/min) (g/min) (W) (mm) (mm)
1 1200 40 2400 52 1.7
2 1500 40 2400 50 1.3
3 1700 40 2400 53 1.2
4 1200 34 2400 52 1.7
5 1500 34 2400 53 1.3
6 1700 34 2400 52 1.1
7 1200 26 2400 52 1.6
8 1500 26 2400 53 1.3
9 1700 26 2400 52 1
10 1200 40 2700 54 2.1
11 1500 40 2700 53 1.7
12 1700 40 2700 56 1.4
13 1200 34 2700 51 1.8
14 1500 34 2700 55 1.6
15 1700 34 2700 51 1.5
16 1200 26 2700 52 1.5
17 1500 26 2700 49 1.2
18 1700 26 2700 55 1.2
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Fig. 2: Predicted hardness outputs for training
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Fig. 5: Predicted layer thickness outputs for testing
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Fig. 6: The model behaviour using hardness, Travel Speed (TS) and
Laser Power (LP)
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Fig. 7: The model behaviour using hardness, Travel Speed (TS) and
Powder Fed Rate (PFR)
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Fig. 8: The model behaviour using layer thickness, Travel Speed
(TS) and Laser Power (LP)
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Fig. 9: The model behaviour using layer thickness, Travel Speed
(TS) and Powder Fed Rate (PFR)

Table 2: The performance of the SLS model of hardness and layer
thickness
Mean Absolute Error
(MAE) of training
2.1538
0.0029

Mean Absolute Error
(MAE) of testing
2.2329
0.0019

Hardness
Layer Thickness

4. Strategy Of Single-Objective Optimization
The data used for the single optimization is obtained from the training
data during the RBFNN evaluation. This data is centre (c), sigma ()
and weight (). For the RBFNN, three inputs were used to predict one
output (hardness or layer thickness). Using c, ¢ and o, the structure of
the GA chromosome can be defined. The RBFNN is used as a fitness
function in order to find the optimal solutions or the optimal data for
the setting process. Consequently, in this case the variables to be
optimised are three variables which are (TS, PFR and LP).
Additionally, based on Equation 2 the GA minimises the error between
the desired property and the calculated property by the RBFNN which
are hardness and layer thickness. GA gives the possible optimal
solutions for the TS, PFR and LP. Thus, the number of variables (M)
is defined as N,=3, the population size (Ps) is 50 and the initial
population can be defined by Equation 1 as mentioned above. The GA
generates the possible solution of TS, PFR and LP and minimises the
error between the calculated output and the desired output and then the
final optimal solutions can be defined. The optimization routine stops
once the termination criterion is achieved. Figs. 10 and 11 show the
fitness values against generation to optimise hardness using deferent
ranges of cladding travel speed.
OBy = (Hp — Hc)? 2)
Where:
OBy: Objective function of hardness
Hp: The Desired target of hardness
H : The calculated hardness by RBFNN

5. Discussion of the Simulation Results for the Single Objective
Function Problem

The GA for a single-objective optimization was applied to minimise
the error between the target of hardness and the calculated hardness
output that obtained from the RBFNN model. From Figs.10 and 11, it
can be seen that very good results of optimization have been gained.
The GA was able to minimise the fitness function successfully in very
short time and therefore was able to suggest the optimum solutions for
the three variables. The obtained optimal solutions of the three-process
setting and the best function values for the fitness function are shown
in Table (3). These results were found using different travel cladding
speed range.

Best: 1.1333e-008 Mean: 3.0392e-005

. Best fitness
M Mean fitness

25

Fitness value
(4]
T

05k
.
0 sasei " i . " ; ;
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Fig. 10: Fitness vs. generation to optimise hardness using cladding
travel speed range (1200-1700) W

Best: 4.9414e-018 Mean: 1.9789e-010

*  Bestfitness
M Mean fitness

0.7¢

0.6

0.5

0.4

0.3F

Fitness value

0.2

0.1+

0 $38es 5. 5. ” 4 ‘ [

0 10 20 30 40 50 60 70

Fig. 11: Fitness vs. generation to optimise hardness using maximum
cladding travel speed range (1600-1700) W
Table 3: Single-objective function results

Generation

Recommended solutions for 3
Boundaries processes setting
. Best .
Constraint . (suggested optimal values)
function
Hardnes-s Powder
(Target) Travel | Laser value Trave- Fed Laser
Seed | Power found 1 Seed Rate Powe-r
(TS) (LP) (TS) (PFR) (LP)
1600- 2.5- 4.941e-
54 1700 73 18 1600 35 2.7
1200- 2.5- 1.133e-
54 1700 78 08 1700 35 2.8

6. Strategy Of Multi-Objective Optimization

Evolutionary multi-objective optimization has become a popular and
useful field of research and application over the past decade. A multi-
objective optimization problem involves a number of objective
functions which are to be either minimized or maximized subject to a
number of constraints and variable bounds [12]. One of the main goals
in multi objective optimization is to find a set of well distributed
solutions along the Pareto front which is consists of Pareto optimum
solutions. [2]. In many multi-objective optimization problems, the
objective functions are usually in conflict with each other. In this
study, multi-objective optimization using GA was used to minimise
two objectives in order to find the optimal solution for the three-setting
process. Both objectives are to minimise the error between the desired
property and the calculated property of hardness and layer thickness
respectively. Accordingly, the multi-objective optimization was used
to design the optimal hardness values and at the same time reduce the
layer thickness and then find the solutions of the three different
variables [TS, PFR and LP]. The Equations 3 and 4 were used to
minimise two objectives and estimates the optimal design of the
process, where the target of hardness need to be optimised together
with the layer thickness. For the multi-objective optimization,

JOPAS Vol.xx No. 3 2025
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generation = 200, population size (Ps) =50 , number of variables (Nyr)
to optimise=3 variables (TS, PFR and LP) and the initial population
can be defined by Equation 1. By using the obtained knowledge from
the RBFNN model (¢, 6 and o), the calculated hardness and layer
thickness can be defined. Then GA evaluates the fitness function by
minimising Equations 3 and 4 and determines the Pareto optimum
solutions. Table (4) shows multi-objective function results and Table
(5) illustrated the optimum solutions for the three variables and the
achieved results when these optimum solutions used as an input data
for the RBFNN model.

In the multi-objective function, the hardness target was 54 mm and
layer thickness was 1.5 mm, the constraints and bound used were
(1200-1700) mm/min, (26-40) gr/min and (2.5-2.8) Kw for TS, PFR
and LP respectively. Fig. 12 shows the Pareto front for the two
objectives, hardness and layer thickness.

OBym = (Hpm — HCM)2 3)
OBy = (Lpm — LCM)2 )
Where:

OBy Objective function of hardness for multi optimization
OBy y: Objective function of layer thickness for multi optimization
Hpy: The Desired target of hardness

Hcy @ The calculated hardness by RBFNN

Lpy : The desired target of layer thickness

Ley : The calculated layer thickness by RBFNN

Table 4: Multi-objective function results

Desired target Boundaries
& Constraint The values of the
for L L
objective function in the
hardness (H) .
. suggested optimal values
layer thickness f iabl
L) Travel Leser or process variables
speed power laver
Hard- Layer (TS) (LP) Hardness s
. thickness
ness thickness (H) L)
(H (D)
1.53e-06 4.54e-21
1.01e-08 2.47e-13
3.95e-12 6.10e-06
5.68e-12 1.47e-07
9.90e-08 3.58e-17
1.34e-07 2.98e-19
1600- 4.11e-08 2.36e-16
54 15 1700 2.5-2.8 1.28e-08 7.23e-15
’ 7.25e-12 2.74e-10
7.26e-20 6.10e-06
1.53e-06 4.44e-23
9.90e-08 3.58e-17
4.44¢-12 1.55e-07
5.68e-12 1.47¢-07
4.11e-08 2.36e-16
1.53e-06 4.44e-23

Table 5: The suggested optimal values for the three variables

Achieved Recommended solutions for 3 processes setting
outputs
Hard- Layer Travel speed Power fed Laser power
ness  thick- (TS) e (LP)
(PFR)
ness Range Range Range

H) L) (1200-1700) (26-40) (2.4-2.7)
52 1.3 1600 38.81 2.56
52 1.3 1600 38.81 2.56
52 1.6 1700 38.85 2.56
52 1.3 1600 38.81 2.56
52 1.5 1600 38.81 2.56
52 1.6 1600 38.81 2.56
52 1.6 1600 38.81 2.56
52 1.6 1600 38.81 2.56
52 1.3 1600 38.81 2.56
52 1.5 1700 38.85 2.56
53 1.3 1600 38.81 2.56
53 1.3 1600 38.81 2.56
52 1.7 1600 38.82 2.56
52 1.3 1600 38.81 2.56
52 1.3 1600 38.81 2.56
52 1.5 1600 38.81 2.56

x10° Pareto front

N

-

Objective 2(Layer Thickness)
&

0.5
0
0 0.5 1 1.5 2 25 3 3.5
Objective 1(Hardness) “10°

Fig.12: Pareto front for hardness and layer thickness

7. Discussion of the Simulation Results for the Multi-Objective
Function Problem

The GA for multi-objective optimization was applied to derive
operating policies for the laser cladding system under multiple
objectives. In the multi-objective model, a set of optimal solutions for
TS, PFR & LP were obtained by minimising the error between the
target and calculated outputs of hardness and layer thickness as
mentioned in Equations 3 and 4. Tables 4 and 5 show the results
obtained from the GA multi-objective optimization in details. Fig. 12
shows the Pareto front for all cases. It can be observed that the GA
multi-objective optimization was able minimise the error for both
equations easily and therefore recommend the optimum solutions for
the three variables of the operation.

8. Conclusion

The RBFNN self-learning system (SLS) model was selected in this
study to model the laser cladding operation due to its capability to
handle highly non-linear systems. The model utilised the data set
provided by TMC to predict the hardness and layer thickness of the
process. Simulation results for model training and testing
demonstrated good performance and excellent agreement between the
outputs of the laser cladding system and the RBFNN, as illustrated in
Figs. 2-5.

Additionally, a Genetic Algorithm (GA) was applied in this research
for both single- and multi-objective optimisation. The GA was used to
minimise the error between the desired and calculated outputs for
hardness and layer thickness, and to determine the optimal settings for
Travel Speed (TS), Powder Feed Rate (PFR), and Laser Power (LP).
The results confirm the robustness of the proposed methodology, and
optimal operational settings for the three parameters were successfully
obtained.
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