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 A B S T R A C T 

In the manufacturing field, it is essential to determine the optimum operating conditions of a 

process as well as the best values for the system input parameters. In other words, it is necessary 

to identify the best possible solutions for the system variables in order to minimise the 

operational cost and maximise product quality simultaneously. To address these challenges, a 

Radial Basis Function Neural Network (RBFNN) was employed to model the laser cladding 

process and predict the hardness and layer thickness of the deposited layers. The operational 

data set was collected from Talleres Mechanics Comas (TMC). Additionally, a Genetic 

Algorithm (GA) framework for single- and multi-objective optimisation of the laser cladding 

process is presented in this paper. The main objective of this technique is to identify optimal 

values for three input variables Travel Speed (TS), Powder Feed Rate (PFR), and Laser Power 

(LP) to assist in the optimal design of the laser cladding process. Simulation results 

demonstrated that very good optimisation solutions were obtained for all three process 

parameters (TS, PFR, and LP).  

 الخوارزمية الجينية المعتمدة على التحسين الفردي والمتعدد الأهداف لمحاكاة وتقييم عملية التغليف الليزري   استخدام

 bدنقلي واي يو و  *aعدنان حمد

aجامعة عمر المختار، قسم الهندسة الكهربائية، كلية الهندسة، البيضاء، ليبيا . 
b جامعة ليفربول جون موريس، قسم الهندسة والتكنولوجيا، ليفربول، المملكة المتحدة. 
 

 الكلمات المفتاحية:   

 . الخوارزمية الجينية

 .الشبكة العصبية لدالة الأساس الشعاعي 

 .عملية التكسية او التغليف الليزري

 . سمك طبقة التغليف الليزري

 . الليزري التغليف صلابة طبقة

 الملخص 

في مجال التصنيع، من الضروري للغاية إيجاد ظروف التشغيل المثلى للعملية التشغيلية بالإضافة إلى أفضل قيم إدخال  

لمتغيرات النظام. بمعنى آخر، إيجاد أفضل الحلول الممكنة لمتغيرات النظام لتحقيق أدنى تكلفة لعملية التشغيل وأعلى جودة  

( لنمذجة  RBFNNتحديات، استُخدمت الشبكة العصبية لدالة الأساس الشعاعي )للمنتج في آنٍ واحد. ولمواجهة هذه ال

عملية التغليف الليزري وكذلك للتنبؤ بصلابة وسمك طبقة عملية التكسية او التغليف الليزري. تم الحصول على بيانات  

قدم هذه الورقة Talleres Mechanics Comas (TMC)شركة  التشغيل المستخدمة في هذه الدراسة من   . كما تُ

( لإطار تحسين أحادي ومتعدد الأهداف لعملية التكسية او التغليف الليزري. الهدف الرئيس ي من  GAخوارزمية جينية )

( الليزري  التغليف  إنجاز عملية  إدخال مختلفة، وهي سرعة  متغيرات  لثلاثة  مثالية  إيجاد حلول  هو  التقنية  (،  TSهذه 

(، والتي يمكن أن تساعد المستخدم على التصميم الأمثل للتغليف  LP(، وقوة الليزر )PFRومعدل تغذية المواد الأولية )

( LP، وTS  ،PERالليزري. أظهرت نتائج المحاكاة أنه تم الحصول على حلول تحسين ممتازة لضبط المتغيرات الثلاث )

 منتج.  أفضللضمان الحصول على 

 
1. Introduction 

One of the most promising methods in the field of natural adaptive 

systems under the Evolutionary Algorithm (EA) paradigm is the 

Genetic Algorithm (GA), which has gained considerable attention due 

http://www.sebhau.edu.ly/journal/jopas
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to its adaptability and efficiency in complex system optimisation [1]. 

Furthermore, GA is one of the most effective and flexible techniques 

for system identification and has been applied extensively across 

numerous scientific domains [2,3]. GA provides robust sampling of 

the solution space and does not require gradient information from the 

model, which is an advantage over analytical modelling techniques 

[4]. Moreover, because GA uses objective function information 

directly and does not require additional auxiliary information, it can 

handle both single- and multi-objective optimisation problems [5]. 

Multi-objective optimisation is often applied to achieve either 

maximum reliability or quality, or to minimise production costs [6]. A 

decision maker can select an appropriate solution using the Pareto 

front, which is a curve or surface representing the best trade-off 

solutions between conflicting objectives [7]. Therefore, identifying the 

Pareto front, composed of Pareto-optimal solutions, is a primary goal 

of multi-objective optimisation. The objective functions in multi-

objective optimisation typically conflict with one another. 

Sourabh Katoch et al. [8] analysed recent developments in GA and 

reviewed the variants of GA that attracted the most attention in the 

research community. Their study detailed the widely used methods, 

their implementations, and discussed future prospects for genetic 

operators, fitness functions, and hybrid algorithms. Golap Chowdhury 

and Gour Roy [9] applied GA to predict rate parameters from 

experimental data during the solid-state reduction of iron ore in the 

presence of graphite. Their findings indicated that the reduction 

process involves three main stages: haematite to magnetite, magnetite 

to wustite, and wustite to iron. Mehmet Fatih Dilekoglu [10] 

introduced GA for optimising phenol adsorption on grapefruit and 

banana peels, using GA to solve the four-parameter Jeager-Erdoes 

equation without making assumptions. This equation provided the 

most accurate fit to experimental data among the considered models. 

H. Abarghouee et al. [11] employed GA to calibrate three semi-

empirical models describing the superposition effect of work 

hardening and dynamic recovery or recrystallisation on flow stress. 

The aim was to minimise the discrepancy between model predictions 

and experimental data. The results demonstrated that the models 

accurately estimated flow stress and agreed closely with experimental 

measurements. 

As previously mentioned, system identification techniques can 

determine unknown model parameters by minimising the difference 

between experimental data and model outputs. Among the dependable 

and adaptable techniques widely used in scientific research, GA stands 

out. In this study, a Radial Basis Function Neural Network (RBFNN) 

is employed to model the laser cladding process and predict outputs 

such as layer thickness and hardness. GA is subsequently utilised to 

determine the optimal operational parameters Travel Speed (TS), 

Powder Feed Rate (PFR), and Laser Power (LP) while simultaneously 

minimising two conflicting objectives: hardness and layer thickness. 

2. Methodology 

This section presents single and multi-objective evolutionary 

algorithms to derive single or a set of optimal operation policies for 

laser cladding process case using experimental data from Talleres 

Mechanics Comas (TMC). The main goal in optimization is to find a 

single or set of feasible solutions which correspond to optimal values 

of one or more objectives. Command line in Matlab has been utilized 

in this research to run the optimization. Therefore, an objective 

function and its corresponding constraints must be defined. Also, 

appropriate settings such as population size/type, initial 

population/range, fitness scaling function, selection function, elite 

count, crossover fraction/function, mutation function, and stopping 

criteria can be chosen otherwise the default setting will be applied by 

Matlab. Moreover, GA has been used as an optimization tool that 

searches for the optimal solutions for the laser cladding process 

variables which are: Travel speed (TS), Powder Fed Rate (PFR) and 

Laser Power (LP) where the information obtained from the RBFNN 

was used to build the GA’s chromosomes. The variables that need to 

be optimised are V1 to Vr. The initial population (IP) for the GA can 

be defined by Equation 1. 

𝐼𝑃 = 𝑁𝑣𝑟 ×  𝑃𝑆                                                                                    (1) 

Where: 

𝑁𝑣𝑟: The number of variables. 

𝑃𝑆: The size of the population 

In order to apply the single or multi-objective optimization RBFNN 

model must be trained and tested first to predict Hardness and Layer 

Thickness. The calculated centers (c), sigma (σ) and weights (ω) 

values from the RBFNN model are used to define the structure of the 

chromosome. The GA evaluates the objective function by minimizing 

the error between the calculated neural network output and desired 

output. In TMC case, the GA optimization was applied for single-

objective and multi-objective problems. The GA strategy applied for 

single and multi-objective problems is shown on Fig. 1.  In the 

following sections, hardness and layer thickness modelling using 

RBFNN, strategy of single and multi-objective optimization is 

presented. Then the discussions of simulation results are discussed. 

3. Hardness and Layer Thickness Modelling using RBFNN  

RBFNN model is presented to predict the outputs of hardness and 

layer thickness. Table (1) shows the input data sets and the output 

targets provided by TMC. This data set was used to train and test the 

RBFNN- self-learning-system (SLS) model. Moreover, cross-

validation approach was applied to test and verify the performance of 

the model. Consequently, the data set was divided into two groups, the 

first group (70%) for training and the second group (30%) for testing. 

Figs. 2 to 5 shows the prediction performance for training and testing 

for hardness and layer thickness. It can be seen from the simulation 

results of training and testing the RBFNN model were very good; in 

general, a good prediction for hardness and layer thickness was 

achieved. Figs. 6 to 9 illustrates the behavior of the model using 3-D 

plots. The Mean Absolute Error (MAE) between the outputs and the 

targets is very small. The MAEs between the outputs are shown in 

Table (2).   

 
 

Fig. 1: Flowchart of the GA single and multi-objective optimization 

Neural network model 
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Table 1: List of experiments provided by Talleres Mechanics Comas 

(TMC) 
Radial Basis Function Neural Network 

(RBFFNN) inputs data (process condition) 
Output Target 

Travel Speed 

(TS) 

(mm/min) 

Powder Fed 

Rate (PFR) 

(g/min) 

Laser 

Power (LP) 

(W) 

Hardn-

ess 

(mm) 

Thicn-

ess 

(mm) 

1 1200 40 2400 52 1.7 
2 1500 40 2400 50 1.3 

3 1700 40 2400 53 1.2 

4 1200 34 2400 52 1.7 
5 1500 34 2400 53 1.3 

6 1700 34 2400 52 1.1 

7 1200 26 2400 52 1.6 
8 1500 26 2400 53 1.3 

9 1700 26 2400 52 1 

10 1200 40 2700 54 2.1 
11 1500 40 2700 53 1.7 

12 1700 40 2700 56 1.4 

13 1200 34 2700 51 1.8 
14 1500 34 2700 55 1.6 

15 1700 34 2700 51 1.5 

16 1200 26 2700 52 1.5 
17 1500 26 2700 49 1.2 

18 1700 26 2700 55 1.2 

 
Fig. 2: Predicted hardness outputs for training 

 
Fig. 3: Predicted hardness outputs for testing 

 
Fig. 4: Predicted layer thickness outputs for training 

 
Fig. 5: Predicted layer thickness outputs for testing 

 
Fig. 6: The model behaviour using hardness, Travel Speed (TS) and 

Laser Power (LP) 

 
Fig. 7: The model behaviour using hardness, Travel Speed (TS) and 

Powder Fed Rate (PFR) 

 
Fig. 8: The model behaviour using layer thickness, Travel Speed 

(TS) and Laser Power (LP) 
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Fig. 9: The model behaviour using layer thickness, Travel Speed 

(TS) and Powder Fed Rate (PFR) 

Table 2: The performance of the SLS model of hardness and layer   

thickness 

 
Mean Absolute Error 

(MAE) of training 

Mean Absolute Error 

(MAE) of testing 

Hardness 2.1538 2.2329 

Layer Thickness 0.0029 0.0019 

4. Strategy Of Single-Objective Optimization 

The data used for the single optimization is obtained from the training 

data during the RBFNN evaluation. This data is centre (c), sigma (σ) 

and weight (ω). For the RBFNN, three inputs were used to predict one 

output (hardness or layer thickness). Using c, σ and ω, the structure of 

the GA chromosome can be defined. The RBFNN is used as a fitness 

function in order to find the optimal solutions or the optimal data for 

the setting process. Consequently, in this case the variables to be 

optimised are three variables which are (TS, PFR and LP). 

Additionally, based on Equation 2 the GA minimises the error between 

the desired property and the calculated property by the RBFNN which 

are hardness and layer thickness. GA gives the possible optimal 

solutions for the TS, PFR and LP. Thus, the number of variables (Nvr) 

is defined as Nvr=3, the population size (PS) is 50 and the initial 

population can be defined by Equation 1 as mentioned above. The GA 

generates the possible solution of TS, PFR and LP and minimises the 

error between the calculated output and the desired output and then the 

final optimal solutions can be defined. The optimization routine stops 

once the termination criterion is achieved. Figs. 10 and 11 show the 

fitness values against generation to optimise hardness using deferent 

ranges of cladding travel speed.  

𝑂𝐵𝐻 = (𝐻𝐷 − 𝐻𝐶)2                                                                           (2) 

Where: 

𝑂𝐵𝐻: Objective function of hardness 

𝐻𝐷: The Desired target of hardness 

𝐻𝐶 : The calculated hardness by RBFNN 

5. Discussion of the Simulation Results for the Single Objective 

Function Problem  

The GA for a single-objective optimization was applied to minimise 

the error between the target of hardness and the calculated hardness 

output that obtained from the RBFNN model. From Figs.10 and 11, it 

can be seen that very good results of optimization have been gained. 

The GA was able to minimise the fitness function successfully in very 

short time and therefore was able to suggest the optimum solutions for 

the three variables. The obtained optimal solutions of the three-process 

setting and the best function values for the fitness function are shown 

in Table (3).  These results were found using different travel cladding 

speed range.  

 
Fig. 10: Fitness vs. generation to optimise hardness using cladding 

travel speed range (1200-1700) W 

 

 

 
Fig. 11: Fitness vs. generation to optimise hardness using maximum 

cladding travel speed range (1600-1700) W 

Table 3: Single-objective function results 

 
Hardnes-s 

(Target) 

 

Boundaries 

Constraint 
Best 

function 

value 
found 

Recommended solutions for 3 

processes setting 

(suggested optimal values) 

Travel 
Seed 

(TS) 

Laser 
Power 

(LP) 

Trave-
l Seed 

(TS) 

Powder 

Fed 

Rate 
(PFR) 

Laser 
Powe-r 

(LP) 

54 
1600-

1700 

2.5-

2.8 

4.941e-

18 
1600 35 2.7 

54 
1200-

1700 

2.5-

2.8 

1.133e-

08 
1700 35 2.8 

6. Strategy Of Multi-Objective Optimization 

Evolutionary multi-objective optimization has become a popular and 

useful field of research and application over the past decade. A multi-

objective optimization problem involves a number of objective 

functions which are to be either minimized or maximized subject to a 

number of constraints and variable bounds [12]. One of the main goals 

in multi objective optimization is to find a set of well distributed 

solutions along the Pareto front which is consists of Pareto optimum 

solutions. [2]. In many multi-objective optimization problems, the 

objective functions are usually in conflict with each other. In this 

study, multi-objective optimization using GA was used to minimise 

two objectives in order to find the optimal solution for the three-setting 

process. Both objectives are to minimise the error between the desired 

property and the calculated property of hardness and layer thickness 

respectively. Accordingly, the multi-objective optimization was used 

to design the optimal hardness values and at the same time reduce the 

layer thickness and then find the solutions of the three different 

variables [TS, PFR and LP]. The Equations 3 and 4 were used to 

minimise two objectives and estimates the optimal design of the 

process, where the target of hardness need to be optimised together 

with the layer thickness. For the multi-objective optimization, 
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generation = 200, population size (PS) =50 , number of variables (Nvr) 

to optimise=3 variables (TS, PFR and LP) and the initial population 

can be defined by Equation 1. By using the obtained knowledge from 

the RBFNN model (c, σ and ω), the calculated hardness and layer 

thickness can be defined. Then GA evaluates the fitness function by 

minimising Equations 3 and 4 and determines the Pareto optimum 

solutions. Table (4) shows multi-objective function results and Table 

(5) illustrated the optimum solutions for the three variables and the 

achieved results when these optimum solutions used as an input data 

for the RBFNN model. 

In the multi-objective function, the hardness target was 54 mm and 

layer thickness was 1.5 mm, the constraints and bound used were 

(1200-1700) mm/min, (26-40) gr/min and (2.5-2.8) Kw for TS, PFR 

and LP respectively.  Fig. 12 shows the Pareto front for the two 

objectives, hardness and layer thickness. 

𝑂𝐵𝐻𝑀 = (𝐻𝐷𝑀 − 𝐻𝐶𝑀)2                                                                           (3) 

𝑂𝐵𝐿𝑀 = (𝐿𝐷𝑀 − 𝐿𝐶𝑀)2                                                                             (4) 

Where: 

𝑂𝐵𝐻𝑀: Objective function of hardness for multi optimization 

𝑂𝐵𝐿𝑀: Objective function of layer thickness for multi optimization 

𝐻𝐷𝑀: The Desired target of hardness 

𝐻𝐶𝑀 : The calculated hardness by RBFNN 

𝐿𝐷𝑀 : The desired target of layer thickness 

𝐿𝐶𝑀 : The calculated layer thickness by RBFNN 

Table 4: Multi-objective function results 

Desired target 

for 

hardness (H) 
layer thickness 

(L) 

Boundaries 

Constraint 

 

The values of the 
objective function in the 

suggested optimal values 

for process variables Travel 

speed 
(TS) 

Leser 

power 
(LP) Hardness 

(H) 

layer 
thickness 

(L) 

Hard-

ness 

(H) 

Layer 

thickness 

(L) 

54 1.5 
1600-
1700 

 

2.5-2.8 

 

1.53e-06 4.54e-21 

1.01e-08 2.47e-13 

3.95e-12 6.10e-06 
5.68e-12 1.47e-07 

9.90e-08 3.58e-17 

1.34e-07 2.98e-19 
4.11e-08 2.36e-16 

1.28e-08 7.23e-15 

7.25e-12 2.74e-10 
7.26e-20 6.10e-06 

1.53e-06 4.44e-23 

9.90e-08 3.58e-17 
4.44e-12 1.55e-07 

5.68e-12 1.47e-07 

4.11e-08 2.36e-16 
1.53e-06 4.44e-23 

Table 5: The suggested optimal values for the three variables 

Achieved 

outputs 
Recommended solutions for 3 processes setting 

Hard- 

ness 
 

(H) 

Layer 

thick-
ness 

(L) 

Travel speed 

(TS) 
Range 

(1200-1700) 

Power fed 
rate 

(PFR) 

Range 
(26-40) 

Laser power 

(LP) 
Range 

(2.4-2.7) 

52 1.3 1600 38.81 2.56 

52 1.3 1600 38.81 2.56 

52 1.6 1700 38.85 2.56 
52 1.3 1600 38.81 2.56 

52 1.5 1600 38.81 2.56 

52 1.6 1600 38.81 2.56 
52 1.6 1600 38.81 2.56 

52 1.6 1600 38.81 2.56 

52 1.3 1600 38.81 2.56 
52 1.5 1700 38.85 2.56 

53 1.3 1600 38.81 2.56 

53 1.3 1600 38.81 2.56 
52 1.7 1600 38.82 2.56 

52 1.3 1600 38.81 2.56 

52 1.3 1600 38.81 2.56 
52 1.5 1600 38.81 2.56 

 
Fig.12: Pareto front for hardness and layer thickness 

7. Discussion of the Simulation Results for the Multi-Objective 

Function Problem 

The GA for multi-objective optimization was applied to derive 

operating policies for the laser cladding system under multiple 

objectives. In the multi-objective model, a set of optimal solutions for 

TS, PFR & LP were obtained by minimising the error between the 

target and calculated outputs of hardness and layer thickness as 

mentioned in Equations 3 and 4. Tables 4 and 5 show the results 

obtained from the GA multi-objective optimization in details. Fig. 12 

shows the Pareto front for all cases. It can be observed that the GA 

multi-objective optimization was able minimise the error for both 

equations easily and therefore recommend the optimum solutions for 

the three variables of the operation.  

8. Conclusion  

The RBFNN self-learning system (SLS) model was selected in this 

study to model the laser cladding operation due to its capability to 

handle highly non-linear systems. The model utilised the data set 

provided by TMC to predict the hardness and layer thickness of the 

process. Simulation results for model training and testing 

demonstrated good performance and excellent agreement between the 

outputs of the laser cladding system and the RBFNN, as illustrated in 

Figs. 2–5. 

Additionally, a Genetic Algorithm (GA) was applied in this research 

for both single- and multi-objective optimisation. The GA was used to 

minimise the error between the desired and calculated outputs for 

hardness and layer thickness, and to determine the optimal settings for 

Travel Speed (TS), Powder Feed Rate (PFR), and Laser Power (LP). 

The results confirm the robustness of the proposed methodology, and 

optimal operational settings for the three parameters were successfully 

obtained. 

9. References  

[1] D. E. Goldberg, Genetic Algorithm in Search, Optimization and 

Machine Learning, Reading, MA: Addison-Wesley, 1989 

[2] Cingara, A., McQueen, H.J., (1992), New Formula for Calculating 

Flow Curves From High Temperature Constitutive Data for 300 

Austenitic Steels., Journal of Materials Processing Technology., 

Volume 36, Issue 1, Pages 31-42. 

[3] Fernández, A. I., Uranga, P., López, B.,  Rodriguez-Ibabe, J.M., 

(2003) Dynamic Recrystallization Behavior Covering a Wide 

Austenite Grain Size Range In Nb and Nb–Ti Micro-Alloyed Steels., 

Materials Science and Engineering., Volume 361, Issues 1–2, Pages 

367-376. 

[4] Wang, M. H., Li, Y. F., Wang, H. W., Zhou, J., Chiba, A., (2013), 

Quantitative Analysis of Work Hardening and Dynamic Softening 

Behavior of Low Carbon Alloy Steel Based on the Flow Stress., 

Materials and design, volume 45, page 384-392. 

[5] Zang, X., Wu, C., (2015)., Energy Cost Minimization of 

0 0.5 1 1.5 2 2.5 3 3.5

x 10
-9

0

0.5

1

1.5

2

2.5

x 10
-10

Objective 1(Hardness)

O
b
je

c
ti
v
e

 2
(L

a
y
e

r 
T

h
ic

k
n

e
ss

)

Pareto front

https://www.sciencedirect.com/journal/journal-of-materials-processing-technology
https://www.sciencedirect.com/journal/journal-of-materials-processing-technology/vol/36/issue/1
https://www.sciencedirect.com/journal/materials-science-and-engineering-a/vol/361/issue/1


Genetic Algorithm (GA)-Based Single- and Multi-Objective Optimization for the Simulation and Evaluation of the Laser ………   Hamad et al. 

JOPAS Vol.xx No.  3 2025                                                                                                                                                                      139  

Compressor Station by Modified Genetic Algorithm., Engineering 

letters, volume 23, issue (4), page 258-268. 

[6] K. Deb, Multi-Objective Optimization Using Evolutionary. John 

Wiley & Sons, Inc., 2001 

[7] Reedy, M. J., Kumar, D. N., (2006), Optimal Reservoir Operation 

Using Multi-Objective Evolutionary Algorithm., Water Resource 

Management, Volume 20, page: 861-878 

[8] Katoch, S., Chauhan, S. S., Kumar, V., (2021), A review on 

Genetic Algorithm: Past, Present, and Future. Multimedia Tools and 

Applications, Volume 80, pages 8091–8126. 

[9] Chowdhury, G. M., Roy, G. G., (2009), Application of Genetic 

Algorithm (GA) to estimate the rate parameters for solid state 

reduction of iron ore in presence of graphite, Computational Materials 

Science, Volume 45, Issue 1, Pages 176-180 

[10] Dilekoglu, M. F., (2016), Use of Genetic Algorithm Optimization 

Technique in the Adsorption of Phenol on Banana and Grapefruit 

Peels, Journal of the chemical society of Pakistan Volume  38, No. 06, 

201 38(06) 

[11] Abarghouee, H., Arabi, H., Seyedein, S. H., Mirzakhani, B. 

(2021), Modelling of hot flow behaviour of API-X70 microalloyed 

steel by genetic algorithm and comparison with experiments, 

International Journal of Pressure Vessels and Piping, Volume 189, 

104261 https://doi.org/10.1016/j.ijpvp.2020.104261 

[12] Deb, K., (2012), Advances in evolutionary multi-objective 

optimization. computational intelligence, Vol. II - Evolutionary Multi-

Objective Optimization. 

 

https://link.springer.com/journal/11042
https://link.springer.com/journal/11042
https://www.sciencedirect.com/journal/computational-materials-science
https://www.sciencedirect.com/journal/computational-materials-science
https://www.sciencedirect.com/journal/computational-materials-science/vol/45/issue/1
https://www.researchgate.net/journal/Journal-of-the-chemical-society-of-pakistan-0253-5106?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoicHVibGljYXRpb24ifX0
https://www.sciencedirect.com/science/article/pii/S0308016120302362
https://www.sciencedirect.com/science/article/pii/S0308016120302362
https://www.sciencedirect.com/journal/international-journal-of-pressure-vessels-and-piping/vol/189/suppl/C
https://doi.org/10.1016/j.ijpvp.2020.104261

