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For a trajectory generated by dynamical systems, Hénon has presented a method called the
Hénon trick or Hénon method. In this method, a surface of a section (Poincaré surface) is
defined, and the Poincaré map (i.e., the trajectory points distributed on it) is collected when the
trajectory crosses the Poincaré surface. Whenever the Hénon trick is used to calculate the
Poincaré map, the autonomous chaotic system's trajectory deviates from the original path,
causing a deformation in its attractor. In this paper, the Hénon trick is discussed to calculate the
Poincaré map for the attractor Lorenz system, after which a 1-parameter pulsed dipole (source-
sink pairs) model is defined on an unbounded domain, and a Python data science code is built
to plot the results. The paper provided a reformed Hénon trick to calculate the Poincaré map for
a 1-parameter pulsed dipole model by defining a cross-section (Poincaré surface), then |
calculate the Poincaré map of the intersection points between this cross-section and the
streamlines generated by that pulsed dipole model. The Poincaré map is important to investigate
the uniformity of the distribution of streamlines generated by the pulsed dipole system.
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1. Introduction dx, dx, dxy
Michel Hénon in [1] described the Hénon trick which is also called = fGxe ) —E = Hl ke, s
(Hénon method) as follows: For an autonomous dynamical system = fy(xy,x2,...,x5). (1)

defined by the following N simultaneous differential equations: A solution can be represented by a curve or trajectory in an N -

dimensional phase space (x;, x5, ..., xy). A frequently used technique
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consists of considering the successive intersections of the trajectory
with a surface of section X . Which in general is an (N —1)-
dimensional subset of the phase space, defined by the following
equation:
S(xl,xZ, ...,xN) =0 (2)
The dynamical system is defined in equation 1, then a mapping of 2
on itself, known as a Poincaré map. Investigating this mapping is more
informative and easier than the examination of the trajectories.
The Poincaré map is defined indirectly by equations 1 and 2. To find
an image of a point P of X, we follow the trajectory proceeding from
P until it intersects X again, and the intersections with X that is defined
by equation 2 is computed. The working mechanism can be explained
as follows:
The First step is: to integrate the system in equation 1 with a fixed
integration step size, i.e., to obtain a sequence of integration points on
the trajectory, and to evaluate S given by equation 2 at each point until
a change of sign is detected. The Hénon trick is to arrange the
integration scheme in such a way that one integration point lies exactly
on . The method considered first the case where equation 2 has the
simple form: For a constant number a, x; — a = 0. (3)
A permutation of coordinates brings this to the form:
xy —a = 0. (4)
To obtain an integration point on the form:
t—a=0. (5
Then the surface of the section was defined by a condition on the
independent variable ¢. It is observed that x, in equation 3 is a
dependent variable. Thus, rearrange the differential system by dividing
the (N — 1) first equations in equation 1 by the last quantity, and
inverting the last equation:
dx;,  f dxy-1  fn-1 dt 1

o T T e - ’ - = 6
dxy fn dxy I dxy I ©)

So, t has now become a dependent variable. fi depends on x, which
N

is an independent variable. In practice, the system in equation 1 is
integrated until a change of sign is detected for the quantity S = xy —
a. Then the system shifted to equation 6. Using either the last
computed point or the previous one as an initial point, the use of the
last point produces a slightly simpler program. The system in equation
6 is integrated for one step, taking as an integration step

AxN = -S. (7)
Thus, the second step is to stop the integration immediately after the
trajectory crosses the Poincaré surface (2). x is a component of Axy
which is the distance between the first integration point after crossover
and the Poincaré surface. Then, as a third step, we compute the next
integration point by integrating equation 6 with a fixed integration step
size — Axy.
A current independent variable 7 is introduced here to merge the two
systems equation 1 and equation 6.

dt
K=—(8)
dt
Where the general form is given by:
dr fuoess dr fu dr ~

For K = 1, we meet the system equation 1, while equation 6 is
. 1
obtained when K = ™

N
Palaniyandi in [2] presents the original attractor Lorenz system of ¢ =
16, p = 45.92, 8 = 4. Then he provided an example for computing
the Poincaré map for the system using Hénon trick.
In this research, a model of the pulsed dipole system will be studied.
The pulsed dipole system was the first illustration of a flow without
circulation with chaotic particle pathways. In an unbounded plane,
Jones and Aref in [3] provided a system that consisted of a simple
potential flow model, which has been used to describe the flow from
the source to the sink. e.g., a single source-sink pair operating when
the source is on, the sink will be on, with fluid injected by the sink
being ousted by the source. It is also highlighted that the fluid is
extracted at the sink and then reinjected at the source on the same
streamline as it entered the sink.
One way to investigate the behaviour of the streamlines generated by
a pulsed dipole system is to use the Hénon trick, which requires an
accurate computational methodology and demonstrate the results using
Python data science.

The paper is organised as follows; the Lorenz system will be
introduced in section 2. Then, section 3 will discuss a modified Hénon
algorithm that is provided in [2] to construct the attractor of the Lorenz
equations and calculate the Poincaré map.

In section 4, a reformed Hénon trick will be provided to calculate the
Poincaré map for the original attractor Lorenz system, essentially by
computing the forward orbit of an initial condition, where the plotted
Poincaré map will be compared with Palaniyandi’s method.

In section 5, a 1-parameter pulsed dipole (source-sink pairs) model
Dipole(a, 0) will be defined on the unbounded domain, which is an
advection generated by the pulsed dipole (source—sink pairs) model.
Lastly, in section 6, the reformed Hénon trick will be utilised to
calculate the Poincaré map for a 1-parameter pulsed dipole model, i.e.,
the intersection of the streamlines generated by Dipole(a, 0) with a
cross-section curve. That is a tool to investigate the uniformity of the
distribution of streamlines on the manifold.

2. The Lorenz System

Edward Norton Lorenz (1917-2008) provided a system of differential
equations in 1963 to explain some of the weather’s behaviors. Even
though most possible models for predicting the weather require PDE,
Lorenz provided a simpler system as provided in equations (10 — 12).

dx

g—t= cr(y—x), (10)
y

E=x(p—2)—y, an

9 e 12)
ac Y bz, (

This model is the Lorenz equations, which is a system of three ordinary
differential equations, where y corresponds to the horizontal
temperature variation, x to the rate of convection, and z corresponds
to the vertical temperature variation. The system parameters p, 3, and
o correspond to the Rayleigh number, physical dimensions of the
layer, and Prandtl number.

The non-linearity of the equations of flow causes non-linearity in the
two equations (11) and (12) [4]. By a resourceful argument, Lorenz
concluded that the Lorenz attractor looks like a single surface.

Lorenz butterfly attractor for the parameters ¢ = 10, b = 28, and
r =8/3 is investigated by [4 - 9]. While a view of the Rdssler band
attractor for the parametersa = 0.173, b = 0.4, ¢ changes from 0
to 7 is studied by [7] and [9]. Moreover, Yan et al in [8] expanded the
conventional Lorenz system to include fractal and fractional dynamics,
and provides a numerical analysis of its chaotic behaviour.

3. Modified Hénon Algorithm Provided by (Palaniyandi 2009)
Palaniyandi in his paper [2] provided a modified Hénon algorithm to
calculate the Poincaré map of the original attractor Lorenz system
where 0 = 16, p = 45.92, B = 4 crossed the Poincaré surface (z —
4492 = 0). Palaniyandi’s algorithm of the modified Hénon method is
as follows:

e Integrated equation 1 utilizing a step size of h = 0.005.

e The integration is stopped once the trajectory reaches the
Poincaré surface (2). The function Ax, computes the distance xy
between the first integration point after crossover and the
Poincaré surface.

e Then the values of all variables x; where (i = 1,2,...,N) are
stored.

e  The next integration point is obtained by integrating equation (6)
with a step size of — Axy.

e  All variables were reset to the values recorded in the third step.

e  Lastly, the system (1) kept integrating with step size h = 0.005.

Hence, the Poincare” map is plotted as shown in figure 1.
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Fig. 1: The Poincaré map for the Lorenz system using the modified
Hénon algorithm cited in [2].

4. Reformed Hénon Trick
In this paper, an algorithm of the reformed Hénon trick is provided as
follows, where equation 13 presents the original attractor Lorenz
system of ¢ = 16, p = 45.92, B = 4.

dx d dz

i oy — x),d—i]: px —y = xz, =Xy - Bz, (13)
Then, by dividing the first and second components of the equation 13
by the third component, and inverting the third component we get
equation 14.

dx oy —x)dy px—y— (xz) dt 1

dz~ xy — Bz'dz xy — Bz 'dz =xy — Bz’

(14)

e Integrate equation 13 to move forward with a fixed integration
step size h = 0.005 (solve Lorenz system using Runge-Kutta
integrator).

e  Stop the integration immediately after the trajectory crosses the
Poincaré surface (z — 44.92 = 0), and restore the cross point p'.

e Compute the next integration point by integrating equation 14
starting from the cross point p’ and moving backward until we
meet the Poincaré surface (z = 44.92), store the integration
point, that is the intersection point P.

e Then equation 13 is integrated from the intersection point P with
astep sizeh = 0.005.

e  Kept integrating till we get another cross point p,’.

The points Py, P, Ps, ... are collectively called as Poincaré map
(these points are also called Poincaré points).

The integration points computed from intersecting the Lorenz
trajectory with a Poincaré surface of section X that is defined by z —
4492 = 0. To collect the integration points P;, where i denotes the
point obtained during ith surface crossing, and i = 1,2,3,.... The
trajectory of the system equations (10 — 12) is integrated until it crosses
and intersects the Poincaré surface (X). Then Az is the distance
alongside z direction between the first integration point P’; of the
system in equations (10 — 12) after its trajectory crosses over this
surface and the Poincaré surface (X), then the integration is stopped.

If Az = 0, then it means that the point of intersection of the trajectory

and the Poincaré surface is present on the trajectory itself, it should be

noted down as in figure 2.
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Fig. 2: Shows the Poincaré map for Lorenz system calculated by the
Reformed Hénon Trick.

The Poincaré map for Lorenz system that calculated by my reformed
Hénon trick is validated by comparing the result of this paper in figure
2 with Palaniyandi’s result in figure 1.

5. Define an Unbounded 1-Parameter Pulsed Dipole System
The pulsed dipole system is activated to produce mixing as an example
of a perturbed map in which chaos is produced in a dynamical system.
The most significant thing is that the two source-sink pairs system can
be modelled with a pair of non-monotonic shears map.

Here, the unbounded pulsed dipole system will be defined by
explaining the working mechanism and the potential flow of the
system, then the Poincaré map for the 1-parameter pulsed dipole model
Dipole(a, 0) will be computed.
5.1. Potential Flow of Pulsed Dipole System

In the case of the unbounded domain, potential flow (imaginary and
real parts of complex potential) can be presented by the following
equation quoted by [10] and [11].

F() = ¢ +ip =2 (log(z - 7) ~ log(z - 25))  (15)
For a period of time t, the movement of the streamlines in the plane is
ruled by equation 15, which will introduce a chaotic advection to the
system by periodically switching operation into the source-sink pair
systems. (zg1, Zg1) and (zg2, Zg2) are two source-to-sink pairs. The
flow moves forward under the first source-sink pair from (zgq
towards zg4) for a pump time (step-size) and stops (a half-cycles),
then governed by the second source-sink pair from (zg, towards
Zg,) for one pump time (another half-cycles) to complete one
iteration time, it is advected for iteration time t and switching
periodically between the two pairs. The flow comes out from the
domain, such as zg;, through a sink such as zg, and is re-injected
through a source during the next cycle of operation.

Following equation 15, we can present the horizontal and vertical
source-sink pairs (dipole) system. The horizontal source-sink pair, that
is when zg; = (—a,0),zg; = (a,0), that is for a source Sg of
strength g , placed at (—a,0) in the complex plan, and the
corresponding sink Sg of strength —g at (a,0). For time t, z =
x(t) + iy(t), the velocity potential ¢ is the real part of the complex
potential, while the stream function v is the imaginary part. The
equations of motion are then given by: (x(t),y(t)) = V¢ =

()

ay’ ox
) ( xX+a X—a y
xX,y) = -
a4 (x+a)?+y? (x—a)?+y>’(x + a)? + y?
T (x— a)? + y? (16)

5.2. The 1-Parameter Pulsed Dipole Model Dipole(a,0)
Here, a 1l-parameter pulsed dipole (source-sink pairs)
model Dipole(a, 0) is represented on an unbounded domain, where
a=0.5.
For the horizontal source-sink pair the source is placed at (—0.5,0)
and the sink is placed at (0.5, 0), while the vertical source-sink pair is
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from (0,—i 0.5) to (0,i 0.5), with a pump time 0.556 and iteration
time 10000 as shown in figure 3.

Bunch of streamlines generated by Dipole(0.5, 0)
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Fig. 3: Shows a bunch of streamlines generated by Dipole(a, 0)
where a = 0.5 at iteration time 10000.

6. Computing Poincaré Map for Dipole Model Dipole(a, 0)

For an unbounded domain pulsed dipole model defined and
parameterized above where the system Dipole(a, 0) built with two
source-sink pairs in one parameter a = 0.5, the first source-sink pair
is from zg, = (—0.5,0) towards zg; = (0.5,0), and the second
source-sink pair is from zg, = (0,—i 0.5) toward zg, = (0,i 0.5).
For a cross-section curve y = {(x,¥): x = 0} that is a
circumference, a normalized intersection measure describes the local
distribution of intersection points of y with the streamlines generated
by the 1-parameter pulsed dipole model Dipole(0.5,0) on an
unbounded domain using the Hénon trick.

The Poincaré map is defined implicitly by intersecting Dipole(0.5,0)
with the cross-section y, and plotted at iteration times 4000 and 10000
as shown in figure 4 and figure 5 respectively.

A
Fig. 4: Shows the Poincaré map for the pulsed dipole model
Dipole(0.5,0) at iteration time 4000, calculated by the Reformed
Hénon Trick.
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Fig. 5: Shows the Poincaré map for the pulsed dipole model
Dipole(0.5,0) at iteration time 10000, calculated by the Reformed
Hénon Trick.

7. Conclusion

The paper provided a reformed Hénon trick and utilized it to calculate
the Poincaré map for the original attractor Lorenz system, where the
plotted Poincaré map was compared with Palaniyandi’s method in
section 4. Moreover, the paper defined a 1-parameter pulsed dipole
model Dipole(a,0) on an unbounded domain. Then, the reformed
Hénon trick was explained and employed to calculate the Poincaré map
for Dipole(a,0), where the streamlines generated by Dipole(a, 0)
intersect the Poincaré surface (x = 0). The Poincaré map is plotted
and visualized on the streamlines.

Further study could investigate the behaviour of the pulsed dipole
system using the results of this paper.

8. Python Code

The GitHub link for the Python code:
https://github.com/IbrahimAlsendid/Reformed-H-non-trick-to-
calculate-the-Poincar-map.git
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