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 A B S T R A C T 

For a trajectory generated by dynamical systems, Hénon has presented a method called the 

Hénon trick or Hénon method. In this method, a surface of a section (Poincaré surface) is 

defined, and the Poincaré map (i.e., the trajectory points distributed on it) is collected when the 

trajectory crosses the Poincaré surface. Whenever the Hénon trick is used to calculate the 

Poincaré map, the autonomous chaotic system's trajectory deviates from the original path, 

causing a deformation in its attractor. In this paper, the Hénon trick is discussed to calculate the 

Poincaré map for the attractor Lorenz system, after which a 1-parameter pulsed dipole (source-

sink pairs) model is defined on an unbounded domain, and a Python data science code is built 

to plot the results. The paper provided a reformed Hénon trick to calculate the Poincaré map for 

a 1-parameter pulsed dipole model by defining a cross-section (Poincaré surface), then I 

calculate the Poincaré map of the intersection points between this cross-section and the 

streamlines generated by that pulsed dipole model. The Poincaré map is important to investigate 

the uniformity of the distribution of streamlines generated by the pulsed dipole system.  

 حساب تطبيق بوانكاريه لثنائي القطب النبض ي ذو معلمة واحدة باستخدام خدعة هينون 

 *الصنديدإبراهيم 

 . جامعة سبها، سبها، ليبياكلية العلوم، قسم الرياضيات، 
 

 الكلمات المفتاحية:   

 . طريقة هنون 

 .خدعة هنون 

 .تطبيق بوانكاريه

 . نظام ثنائي القطب النبض ي 

 .نظام لورينتز 

 الملخص  

ليكن لدينا جاذب أو مسار )خطوط انسيابية( مولدة بواسطة نظام معادلات ديناميكي، قدم هينون طريقة تعرف بخدعة 

هينون  طريقة  أو  الخطوط    ٬هينون  مسار  يعبر  عندما  بوانكاريه(.  )سطح  يسمى  تعريف سطح  فيها  يتم  الطريقة  هذه  في 

حيث ينحرف مسار النظام   ٬على المسار تسمى تطبيق بوانكاريه  الانسيابية سطح البوانكاريه ينتج تجمع من النقاط موزعة

في هذه الورقة، تم مناقشة   .الفوضوي المستقل عن المسار الأصلي مما يؤدي إلى تشوه في المسار أثناء حساب تطبيق بوانكاريه

خدعة هينون لحساب تطبيق بوانكاريه لنظام جاذب لورينز، وتم تعريف نظام ثنائي القطب النبض ي ذو معامل واحد معرف  

على مجال غير محدود، حيث تم استخدام لغة برمجة البايثون لبناء كود وعرض النتائج. القطب النبض ي هو نظام يتكون  

وهو أول مثال يعرض مسارات الجسيمات الفوضوية مع أنه نظام لتدفق خطوط انسيابية من قطبين مصدر ومصرف،  

هذه الورقة تقدم طريقة معدلة لخدعة هينون لحساب تطبيق بوانكاريه لنظام ثنائي القطب النبض ي ذو     .بدون دوران

بوانكاريه، من ثم حساب   تم تطبيق طريقة هينون من خلال اختيار سطح  معلمة واحدة معرف على مجال غير محدود. 

لدة بواسطة نظام ثنائي القطب النبض ي. يعتبر  تطبيق بوانكاريه لنقاط التقاطع بين هذا السطح والخطوط الانسيابية المو 

 لدراسة تجانس توزيع الخطوط الانسيابية المولدة بواسطة نظام ثنائي القطب النبض ي.
ً
 تطبيق البوانكاريه أداة مهمة جدا

1. Introduction   

Michel Hénon in [1] described the Hénon trick which is also called 

(Hénon method) as follows: For an autonomous dynamical system 

defined by the following 𝑁 simultaneous differential equations: 

𝑑𝑥1

𝑑𝑡
 =  𝑓1(𝑥1, 𝑥2, . . . , 𝑥𝑁),

𝑑𝑥2

𝑑𝑡
 =  𝑓2(𝑥1, 𝑥2, . . . , 𝑥𝑁), … ,

𝑑𝑥𝑁

𝑑𝑡
 

=  𝑓𝑁(𝑥1, 𝑥2, . . . , 𝑥𝑁).  (1) 

A solution can be represented by a curve or trajectory in an 𝑁 -

dimensional phase space (𝑥1, 𝑥2, . . . , 𝑥𝑁). A frequently used technique 

http://www.sebhau.edu.ly/journal/jopas
mailto:Ibr.alsendid@sebhau.edu.ly
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consists of considering the successive intersections of the trajectory 

with a surface of section 𝛴 . Which in general is an (𝑁 − 1) -

dimensional subset of the phase space, defined by the following 

equation: 

𝑆(𝑥1, 𝑥2, … , 𝑥𝑁) = 0  (2) 

The dynamical system is defined in equation 1, then a mapping of 𝛴 

on itself, known as a Poincaré map. Investigating this mapping is more 

informative and easier than the examination of the trajectories. 

The Poincaré map is defined indirectly by equations 1 and 2. To find 

an image of a point 𝑃 of 𝛴, we follow the trajectory proceeding from 

𝑃 until it intersects 𝛴 again, and the intersections with 𝛴 that is defined 

by equation 2 is computed.   The working mechanism can be explained 

as follows: 

The First step is: to integrate the system in equation 1 with a fixed 

integration step size, i.e., to obtain a sequence of integration points on 

the trajectory, and to evaluate 𝑆 given by equation 2 at each point until 

a change of sign is detected. The Hénon trick is to arrange the 

integration scheme in such a way that one integration point lies exactly 

on 𝛴. The method considered first the case where equation 2 has the 

simple form: For a constant number 𝑎, 𝑥1  −  𝑎 =  0.  (3) 

A permutation of coordinates brings this to the form: 

𝑥𝑁  −  𝑎 =  0.  (4) 

To obtain an integration point on the form: 

𝑡 −  𝑎 =  0.   (5) 

Then the surface of the section was defined by a condition on the 

independent variable 𝑡 . It is observed that 𝑥𝑁  in equation 3 is a 

dependent variable. Thus, rearrange the differential system by dividing 

the (𝑁 −  1) first equations in equation 1 by the last quantity, and 

inverting the last equation: 
𝑑𝑥1

𝑑𝑥𝑁
 =  

𝑓1

𝑓𝑁
, … ,

𝑑𝑥𝑁−1

𝑑𝑥𝑁
 =  

𝑓𝑁−1

𝑓𝑁
,

𝑑𝑡

𝑑𝑥𝑁
 =  

1

𝑓𝑁
.  (6)   

So, 𝑡 has now become a dependent variable. 
1

𝑓𝑁
 depends on 𝑥𝑁 which 

is an independent variable. In practice, the system in equation 1 is 

integrated until a change of sign is detected for the quantity 𝑆 = 𝑥𝑁 −
𝑎 . Then the system shifted to equation 6. Using either the last 

computed point or the previous one as an initial point, the use of the 

last point produces a slightly simpler program. The system in equation 

6 is integrated for one step, taking as an integration step 

𝛥𝑥𝑁  =  −𝑆.  (7) 

Thus, the second step is to stop the integration immediately after the 

trajectory crosses the Poincaré surface (𝛴). 𝑥𝑁 is a component of 𝛥𝑥𝑁 

which is the distance between the first integration point after crossover 

and the Poincaré surface. Then, as a third step, we compute the next 

integration point by integrating equation 6 with a fixed integration step 

size − 𝛥𝑥𝑁. 

A current independent variable 𝜏 is introduced here to merge the two 

systems equation 1 and equation 6. 

𝐾 =  
𝑑𝑡

𝑑𝜏
 (8) 

Where the general form is given by:  
𝑑𝑥1

𝑑𝜏
 =  𝐾 𝑓1, … ,

𝑑𝑥𝑁

𝑑𝜏
 = 𝐾 𝑓𝑁,

𝑑𝑡

𝑑𝜏
 = 𝐾.  (9)   

For 𝐾 =  1 , we meet the system equation 1, while equation 6 is 

obtained when 𝐾 =  
1

𝑓𝑁
. 

Palaniyandi in [2] presents the original attractor Lorenz system of 𝜎 =
16, 𝜌 = 45.92, 𝛽 = 4. Then he provided an example for computing 

the Poincaré map for the system using Hénon  trick.  

In this research, a model of the pulsed dipole system will be studied. 

The pulsed dipole system was the first illustration of a flow without 

circulation with chaotic particle pathways. In an unbounded plane, 

Jones and Aref in [3] provided a system that consisted of a simple 

potential flow model, which has been used to describe the flow from 

the source to the sink. e.g., a single source-sink pair operating when 

the source is on, the sink will be on, with fluid injected by the sink 

being ousted by the source. It is also highlighted that the fluid is 

extracted at the sink and then reinjected at the source on the same 

streamline as it entered the sink. 

One way to investigate the behaviour of the streamlines generated by 

a pulsed dipole system is to use the Hénon trick, which requires an 

accurate computational methodology and demonstrate the results using 

Python data science. 

The paper is organised as follows; the Lorenz system will be 

introduced in section 2. Then, section 3 will discuss a modified Hénon 

algorithm that is provided in [2] to construct the attractor of the Lorenz 

equations and calculate the Poincaré map. 

In section 4, a reformed Hénon trick will be provided to calculate the 

Poincaré map for the original attractor Lorenz system, essentially by 

computing the forward orbit of an initial condition, where the plotted 

Poincaré map will be compared with Palaniyandi’s method.  

In section 5, a 1-parameter pulsed dipole (source-sink pairs) model 

𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0) will be defined on the unbounded domain, which is an 

advection generated by the pulsed dipole (source–sink pairs) model. 

Lastly, in section 6, the reformed Hénon trick will be utilised to 

calculate the Poincaré map for a 1-parameter pulsed dipole model, i.e., 

the intersection of the streamlines generated by 𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0) with a 

cross-section curve. That is a tool to investigate the uniformity of the 

distribution of streamlines on the manifold.  

2. The Lorenz System 

Edward Norton Lorenz (1917–2008) provided a system of differential 

equations in 1963 to explain some of the weather’s behaviors. Even 

though most possible models for predicting the weather require PDE, 

Lorenz provided a simpler system as provided in equations (10 – 12). 
𝑑𝑥

𝑑𝑡
= 𝜎(𝑦 − 𝑥),                (10) 

𝑑𝑦

𝑑𝑡
= 𝑥(𝜌 − 𝑧) − 𝑦, (11) 

𝑑𝑧

𝑑𝑡
= 𝑥𝑦 −  𝛽𝑧,                  (12) 

This model is the Lorenz equations, which is a system of three ordinary 

differential equations, where 𝑦  corresponds to the horizontal 

temperature variation, 𝑥 to the rate of convection, and 𝑧 corresponds 

to the vertical temperature variation. The system parameters 𝜌, 𝛽, and 

𝜎  correspond to the Rayleigh number, physical dimensions of the 

layer, and Prandtl number.  

The non-linearity of the equations of flow causes non-linearity in the 

two equations (11) and (12) [4]. By a resourceful argument, Lorenz 

concluded that the Lorenz attractor looks like a single surface. 

Lorenz butterfly attractor for the parameters 𝜎 = 10, 𝑏 = 28,  and  

𝑟 = 8/3  is investigated by [4 - 9]. While a view of the Rössler band 

attractor for the parameters 𝑎 =  0.173, 𝑏 =  0.4, 𝑐  changes from 0 

to 7 is studied by [7] and [9]. Moreover, Yan et al in [8] expanded the 

conventional Lorenz system to include fractal and fractional dynamics, 

and provides a numerical analysis of its chaotic behaviour. 

3. Modified Hénon Algorithm Provided by (Palaniyandi 2009) 

Palaniyandi in his paper [2] provided a modified Hénon algorithm to 

calculate the Poincaré map of the original attractor Lorenz system 

where 𝜎 = 16, 𝜌 = 45.92, 𝛽 = 4 crossed the Poincaré surface (𝑧 −
44.92 = 0). Palaniyandi’s algorithm of the modified Hénon method is 

as follows: 

• Integrated equation 1 utilizing a step size of ℎ = 0.005. 

• The integration is stopped once the trajectory reaches the 

Poincaré surface (𝛴). The function ∆𝑥𝑁 computes the distance 𝑥𝑁 

between the first integration point after crossover and the 

Poincaré surface. 

• Then the values of all variables 𝑥𝑖  where (𝑖 =  1, 2, . . . , 𝑁) are 

stored. 

• The next integration point is obtained by integrating equation (6) 

with a step size of − ∆𝑥𝑁. 

• All variables were reset to the values recorded in the third step. 

• Lastly, the system (1) kept integrating with step size ℎ =  0.005. 

Hence, the Poincare´ map is plotted as shown in figure 1. 
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Fig. 1: The Poincaré map for the Lorenz system using the modified 

Hénon algorithm cited in [2] . 

4. Reformed Hénon Trick 

In this paper, an algorithm of the reformed Hénon trick is provided as 

follows, where equation 13 presents the original attractor Lorenz 

system of 𝜎 = 16, 𝜌 = 45.92, 𝛽 = 4.   
𝑑𝑥

𝑑𝑡
=  𝜎(𝑦 −  𝑥),

𝑑𝑦

𝑑𝑡
=  𝜌𝑥 −  𝑦 −  𝑥𝑧,

𝑑𝑧

𝑑𝑡
=  𝑥𝑦 −  𝛽𝑧, (13) 

Then, by dividing the first and second components of the equation 13  

by the third component, and inverting the third component we get 

equation 14. 
𝑑𝑥

𝑑𝑧
=

𝜎(𝑦 −  𝑥)

𝑥𝑦 −  𝛽𝑧
,
𝑑𝑦

𝑑𝑧
=

𝜌𝑥 −  𝑦 −  (𝑥𝑧)

𝑥𝑦 −  𝛽𝑧
,
𝑑𝑡

𝑑𝑧
=

1

𝑥𝑦 −  𝛽𝑧
.      (14) 

 

• Integrate equation 13 to move forward with a fixed integration 

step size ℎ =  0.005 (solve Lorenz system using Runge-Kutta 

integrator). 

• Stop the integration immediately after the trajectory crosses the 

Poincaré surface (𝑧 − 44.92 = 0), and restore the cross point 𝑝′. 
• Compute the next integration point by integrating equation 14 

starting from the cross point 𝑝′ and moving backward until we 

meet the Poincaré surface ( 𝑧 = 44.92 ), store the integration 

point, that is the intersection point 𝑃. 

• Then equation 13 is integrated from the intersection point 𝑃 with 

a step size ℎ =  0.005. 

• Kept integrating till we get another cross point 𝑝2′. 
• The points 𝑃1, 𝑃2, 𝑃3, … are collectively called as Poincaré map 

(these points are also called Poincaré points). 

The integration points computed from intersecting the Lorenz 

trajectory with a Poincaré surface of section 𝛴 that is defined by 𝑧 −
44.92 = 0. To collect the integration points 𝑃𝑖, where 𝑖 denotes the 

point obtained during 𝑖 th surface crossing, and 𝑖 =  1, 2, 3, . . ..  The 

trajectory of the system equations (10 – 12) is integrated until it crosses 

and intersects the Poincaré surface ( 𝛴 ). Then 𝛥𝑧  is the distance 

alongside 𝑧  direction between the first integration point 𝑃′𝑖  of the 

system in equations (10 – 12) after its trajectory crosses over this 

surface and the Poincaré surface (𝛴), then the integration is stopped. 

If 𝛥𝑧 =  0, then it means that the point of intersection of the trajectory 

and the Poincaré surface is present on the trajectory itself, it should be 

noted down as in figure 2. 

 
Fig. 2: Shows the Poincaré map for Lorenz system calculated by the 

Reformed Hénon Trick. 

 

The Poincaré map for Lorenz system that calculated by my reformed 

Hénon trick is validated by comparing the result of this paper in figure 

2 with Palaniyandi’s result in figure 1. 

5. Define an Unbounded 1-Parameter Pulsed Dipole System 

The pulsed dipole system is activated to produce mixing as an example 

of a perturbed map in which chaos is produced in a dynamical system. 

The most significant thing is that the two source-sink pairs system can 

be modelled with a pair of non-monotonic shears map.  

Here, the unbounded pulsed dipole system will be defined by 

explaining the working mechanism and the potential flow of the 

system, then the Poincaré map for the 1-parameter pulsed dipole model 

𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0) will be computed. 

5.1. Potential Flow of Pulsed Dipole System 

In the case of the unbounded domain, potential flow (imaginary and 

real parts of complex potential) can be presented by the following 

equation quoted by [10] and [11]. 

𝐹(𝑧) = 𝜙 + 𝑖𝜓 =
𝑔

2𝜋
(𝑙𝑜𝑔(𝑧 − 𝑧⊕) − 𝑙𝑜𝑔(𝑧 − 𝑧⊖))       (15) 

For a period of time t, the movement of the streamlines in the plane is 

ruled by equation 15, which will introduce a chaotic advection to the 

system by periodically switching operation into the source-sink pair 

systems. (𝑧⊕1, 𝑧⊖1) and (𝑧⊕2, 𝑧⊖2) are two source-to-sink pairs. The 

flow moves forward under the first source-sink pair from (𝑧⊕1 

towards 𝑧⊖1) for a pump time (step-size) and stops (a half-cycles), 

then governed by the second source-sink pair from (𝑧⊕2  towards 

 𝑧⊖2)  for one pump time (another half-cycles) to complete one 

iteration time, it is advected for iteration time 𝑡  and switching 

periodically between the two pairs. The flow comes out from the 

domain, such as  𝑧⊕1, through a sink such as 𝑧⊖1 and is re-injected 

through a source during the next cycle of operation. 

Following equation 15, we can present the horizontal and vertical 

source-sink pairs (dipole) system. The horizontal source-sink pair, that 

is when  𝑧⊕1  =  (−𝑎, 0), 𝑧⊖1 =  (𝑎, 0), that is for a source  𝑆⊕  of 

strength 𝑔 , placed at (−𝑎, 0)  in the complex plan, and the 

corresponding sink 𝑆⊖  of strength −𝑔  at (𝑎, 0) . For time 𝑡 , 𝑧 =

 𝑥(𝑡)  +  𝑖𝑦(𝑡), the velocity potential 𝜙 is the real part of the complex 

potential, while the stream function 𝜓  is the imaginary part.  The 

equations of motion are then given by:  (𝑥̇(𝑡), 𝑦̇(𝑡)) =  𝛻𝜙 =

 ( 
𝜕𝜓

𝜕𝑦
, −

𝜕𝜓 

𝜕𝑥
). 

(𝑥̇, 𝑦̇) = (
𝑥 + 𝑎

(𝑥 +  𝑎)2  +  𝑦2 −
𝑥 − 𝑎

(𝑥 −  𝑎)2  +  𝑦2 ,
𝑦

(𝑥 +  𝑎)2  +  𝑦2

−
𝑦

(𝑥 −  𝑎)2  +  𝑦2)   (16) 

     5.2. The 1-Parameter Pulsed Dipole Model 𝑫𝒊𝒑𝒐𝒍𝒆(𝒂, 𝟎) 

Here, a 1-parameter pulsed dipole (source-sink pairs) 

model 𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0) is represented on an unbounded domain, where 

𝑎 = 0.5.  

For the horizontal source-sink pair the source is placed at (−0.5, 0) 

and the sink is placed at (0.5, 0), while the vertical source-sink pair is 
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from (0, −𝑖 0.5) to (0, 𝑖 0.5), with a pump time 0.556 and iteration 

time 10000 as shown in figure 3. 

 
Fig. 3: Shows a bunch of streamlines generated by 𝑫𝒊𝒑𝒐𝒍𝒆(𝒂, 𝟎) 

where 𝒂 = 𝟎. 𝟓 at iteration time 10000. 

6. Computing Poincaré Map for Dipole Model 𝑫𝒊𝒑𝒐𝒍𝒆(𝒂, 𝟎) 

For an unbounded domain pulsed dipole model defined and 

parameterized above where the system 𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0) built with two 

source-sink pairs in one parameter 𝑎 = 0.5, the first source-sink pair 

is from  𝑧⊕1  =  (−0.5, 0) towards 𝑧⊖1 =  (0.5, 0) , and the second 

source-sink pair is from 𝑧⊕2 = (0, −𝑖 0.5) toward 𝑧⊖2 = (0, 𝑖 0.5). 

For a cross-section curve 𝛾 =  {(𝑥, 𝑦) ∶  𝑥 =  0}  that is a 

circumference, a normalized intersection measure describes the local 

distribution of intersection points of 𝛾 with the streamlines generated 

by the 1-parameter pulsed dipole model 𝐷𝑖𝑝𝑜𝑙𝑒(0.5, 0)  on an 

unbounded domain using the Hénon trick. 

The Poincaré map is defined implicitly by intersecting 𝐷𝑖𝑝𝑜𝑙𝑒(0.5, 0) 

with the cross-section 𝛾, and plotted at iteration times 4000 and 10000 

as shown in figure 4 and figure 5 respectively.  

 
Fig. 4: Shows the Poincaré map for the pulsed dipole model 

𝑫𝒊𝒑𝒐𝒍𝒆(𝟎. 𝟓, 𝟎) at iteration time 4000, calculated by the Reformed 

Hénon Trick. 

 

 
Fig. 5: Shows the Poincaré map for the pulsed dipole model 

𝑫𝒊𝒑𝒐𝒍𝒆(𝟎. 𝟓, 𝟎) at iteration time 10000, calculated by the Reformed 

Hénon Trick. 

7. Conclusion  

The paper provided a reformed Hénon trick and utilized it to calculate 

the Poincaré map for the original attractor Lorenz system, where the 

plotted Poincaré map was compared with Palaniyandi’s method in 

section 4. Moreover, the paper defined a 1-parameter pulsed dipole 

model 𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0)  on an unbounded domain. Then, the reformed 

Hénon trick was explained and employed to calculate the Poincaré map 

for 𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0), where the streamlines generated by 𝐷𝑖𝑝𝑜𝑙𝑒(𝑎, 0) 

intersect the Poincaré surface (𝑥 = 0). The Poincaré map is plotted 

and visualized on the streamlines. 

Further study could investigate the behaviour of the pulsed dipole 

system using the results of this paper. 

8. Python Code 

The GitHub link for the Python code: 

https://github.com/IbrahimAlsendid/Reformed-H-non-trick-to-

calculate-the-Poincar-map.git 
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