

Sun Protection Factor, Antioxidant, and in Silico Study of Some Synthesized Benzylidene Analogues of Ketamine Against Elastase and Collagenase

Abraham Eboh^{a*}, Azibanasamesa Owaba^b, Ayibaena Frank-Oputu^a, Provider Igbereyivwe^a

^aDepartment of Biochemistry, Faculty of Basic Medical Science, Niger Delta University, Wilberforce Island Bayelsa State, Nigeria.

^bDepartment of Pharmaceutical & Medicinal Chemistry, Faculty of Pharmacy, Niger Delta University, Wilberforce Island Bayelsa State, Nigeria.

Keywords:

Ketamine.
Sun Protection.
Collagenase.
Elastase.
Antioxidants.

A B S T R A C T

Background: The degradation of ozone layer is in part due to human activities, climate change. These have led to many skin diseases. Scientists are investigating for new alternative sun protection agents having low toxicity. Therefore, analogues of ketamine (benzylidene) were investigated for sun protection ability. **Objective:** In this present research work, derivatives of ketamine synthesized from the department of Pharmaceutical and Medicinal Chemistry Niger Delta University Bayelsa state (D11-D15) were experimented for sun protection factor. Also, antioxidant and in vitro anti-elastase and anti-collagenase activities and in silico studies were carried out. **Methods:** in vitro spectrophotometric determination of derivatives of ketamine were carried out, DPPH antiradical scavenging ability of D11-D15, total antioxidant capacity and ferric reducing antioxidant power were also evaluated on the compounds (D11-D15). Also in vitro spectrophotometric assays on anti-elastase and anti-collagenase were also carried out on (D11-D12) and lastly molecular docking studies were carried out on (D11-D12) against the enzymes elastase and collagenase. **Results:** The results from the study revealed that D11-D15 at concentrations of 25, 50 and 100 µg/ml shows higher SPF values. Also, the total antioxidant capacity reported as microgram ascorbic acid equivalent/g compound shows that D14 > D11 > D13 > D12 > D15. Also, the DPPH radical scavenging potentials and ferric reducing antioxidant power reported as percentages and microgram gallic acid equivalent/g compound revealed higher values. The anti-elastase and anti-collagenase targeted with ketamine analogues showed that (D11-D15) inhibited elastase and collagenase activity results presented as IC50; these results were confirmed by the docking studies as the analogues bind more tightly to the active sites of elastase and collagenase better than sivelestat and acetylcysteine respectively. **Conclusion:** Our result shows that D11-D15 could serve as sun protection agents, antioxidants and antiaging especially in the cosmetic industry.

عامل الحماية من أشعة الشمس، مضادات الأكسدة ودراسة حاسوبية لبعض نظائر البنزيلدين المركبة من الكيتامين ضد الإيلاستاز والكولاجيناز

أبراهام س. إبوبه^{a*}، أزيبانا ساميسا أووبا^b، أيبابينا فرانك-أوبوتو^a، وبروفايدير إيجيريفو^a

^aقسم الكيمياء الحيوية، كلية العلوم الطبية الأساسية، جامعة دلتا النيجر، جزيرة ويلبرفورس، ولاية باييسا، نيجيريا.

^bقسم الكيمياء الصيدلانية والطبية، كلية الصيدلة، جامعة دلتا النيجر، جزيرة ويلبرفورس، ولاية باييسا، نيجيريا.

*Corresponding author.

E-mail addresses: eboh.abraham@ndu.edu.ng, (A. Qwaba) azibanasamesa@gmail.com, (A. Frank-Oputu) frankoputu@gmail.com, , (P. Igbereyivwe) p.igbereyivwe@gmail.com.

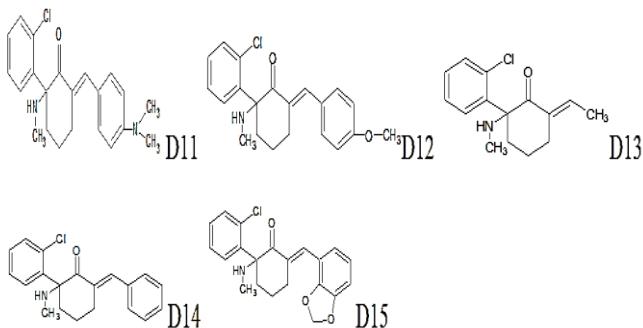
Article History : Received 16 January 25 - Received in revised form 21 November 25 - Accepted 29 November 25

الكلمات المفتاحية:

الكيتامين.
الحماية من أشعة الشمس.
الكولاجيناز.
الإيلاستاز.
مضادات الأكسدة.

الملخص

الاساس النظري: يعود تدهور طبقة الأوزون جزئياً إلى الأنشطة البشرية وتغير المناخ. وقد أدى ذلك إلى ظهور العديد من الأمراض الجلدية. يعكف العلماء على البحث عن عوامل حماية جديدة بديلة من أشعة الشمس ذات سمية منخفضة. لذلك، تمت دراسة نظائر الكيتامين (البنتزيلدين) من حيث قدرتها على الحماية من أشعة الشمس، ومضادات الأكسدة، ومضادات الإيلاستاز والكولاجيناز في دراسات مختبرية وحاسوبية. الهدف: في هذا البحث، تم اختبار مسخنات الكيتامين المركبة من قسم الكيمياء الصيدلانية والطبية بجامعة دلتا النiger بولاية بايلسا (D15 إلى D11) من حيث عامل الحماية من أشعة الشمس. كما تم إجراء دراسات على الأنشطة المضادة للأكسدة والمضادة للإيلاستاز والكولاجيناز في المختبر وفي الحاسوب. الطرق: تم إجراء تحديد طيفي ضوئي لمسخنات الكيتامين في المختبر، كما تم تقييم قدرة (D15 إلى D11) على إزالة الجذور الحرة DPPH. والقدرة المضادة للأكسدة الكلية، وقوة مضادات الأكسدة المختزلة للجديد على المركبات (D15 إلى D11). كما تم إجراء اختبارات طيفية ضوئية في المختبر على مضادات الإيلاستاز والكولاجيناز على (-D11 إلى D12) وأخيراً تم إجراء دراسات ربط جزئي على (D12 إلى D11) ضد إنزيمات الإيلاستاز والكولاجيناز. النتائج: أظهرت نتائج الدراسة أن D11-D15 بتركيزات 25 و 50 و 100 $\mu\text{g/ml}$ تظهر قيم SPF أعلى. كما أظهرت السعة المضادة للأكسدة الإجمالية المبلغ عنها بالميكرограм من حمض الأسكوبيك المكافئ/غرام من المركب أن D14 > D11 > D13 > D12 > D15 > D10. كما أظهرت إمكانات إزالة جذور DPPH والقدرة المضادة للأكسدة المختزلة للجديد المبلغ عنها بالنسبة المئوية والميكروغرام من حمض الغاليك المكافئ/غرام من المركب، قيماً أعلى. أظهرت مضادات الإيلاستاز والكولاجيناز المستهدفة بنظائر الكيتامين أن D15 إلى D11 تثبط نشاط الإيلاستاز والكولاجيناز، كما هو موضح في IC50؛ وقد تم تأكيد هذه النتائج من خلال دراسات (docking)، حيث ترتبط النظائر بشكل أقوى بالموقع النشطة لـ الإيلاستاز والكولاجيناز بشكل أفضل من السيفيلينات والأسيتيل سيستين على التوالي. الاستنتاج: تظهر نتائجنا أن D15 يمكن أن تعمل كعوامل حماية من أشعة الشمس ومضادات للأكسدة ومضادات للشيخوخة خاصة في صناعة مستحضرات التجميل.


1. Introduction

Human activities centered on chlorofluorocarbons and many other activities have negatively damaged the ozone layer. Also, excessive exposure of the skin to ultra-violet light due to outdoor entertainment or other outdoor activities leads to many health problems [1-3].

Skin is the protective cover of our whole body, is constantly exposed to the environment, making it prone to environmental damage leading to aging [4]. The aging skin is due to external and internal factors. Internal factors induced skin aging arises because of metabolism in the skin cells which produced free radicals. Production of radicals in excess from the skin leads to wrinkle formation. This is due to the activation of the extracellular membrane enzyme collagenase and elastase [5]. External factors inducing skin aging included environmental pollution, irradiation and xenobiotic. This can also lead to the production of many free radicals in the skin [6,7]. The breakdown of elastin and collagen [fibrous proteins that supports the skin extracellular matrix] by elastase and collagenase are activated by reactive oxygen species [5]. Collagen a structural protein made of three polypeptides wounds around itself is found in skin, tendon, bone, cartilage and teeth [8]. Therefore, the hydrolysis of collagen and elastin induced by free radicals triggers the onset of wrinkling and aging in the skin [9]. Collagenase and elastase the enzymes that degrade collagen and elastin during the chronological and photo aging, leading to sagging, coarse, laxity and wrinkling of the skin belongs to a matrix metalloproteinase family of proteins, that are transmembrane [8]. Sunlight consists of ultraviolet [UV] radiation, which can be beneficial or harmful to the skin. Ultraviolet radiation wavelength ranges from 200-280 nm known as UV-C, 280-320 nm UV-B and 320-400 as UV-A [10]. Little exposure to sunlight is useful for vitamin D formation [11]. Excessive exposure to sunlight is carcinogenic, it also give rise to other effects like depression of the immune system, sunburn, and accelerated skin aging [12]. Prolonged UV exposure can lead to the production of free radicals in the tissues of the skin. These radicals damage macromolecules like protein, DNA, and lipids. These radicals and damaged macromolecules lead to overproduction of oxidants in the skin cells

[oxidative stress]. Oxidative stress can lead to harmful effects such as inflammation, aging and skin cancer [13]. A natural pigment in our skin is melanin. Melanin produced in the epidermis protects skin from the adverse effects of UV radiation. However prolonged exposure of melanin to UV can cause age spots, melisma and other skin problems [14]. Therefore, to protect the skin sunscreens are needed containing UV filters. Filters can absorb or reflect UV radiation, by decreasing its penetration into the skin. However, many synthetic UV filters are toxic [15]. Many strategies employed to inhibit skin aging is to reduce the activity of metalloproteinase enzymes elastase and collagenase. Benzylidene derived from ketamine shown chemically below were synthesized at the Department of Pharmaceutical Chemistry in the faculty of Pharmacy, Niger Delta University, Bayelsa State. These Ketamine analogues [Benzylidene] were used as sun protection factor, antioxidant and anti-collagenase and elastase activity *in vitro* and *in silico* in this present study. In the literature there are no works carried out utilizing analogues of ketamine against skin aging *in vitro* and *in silico*. Therefore, the present study was to determine *in vitro* sun protection of some benzylidene analogues of ketamine. Ketamine is used medically for the induction and maintenance of anesthesia, it is also used for the treatment of depression and pain management [16]. Its action is on the N-methyl D-aspartic acid receptor [NMDA] [17]. Ketamine antagonistic ability on NMDA receptors can provide analgesia, but cannot induce complete loss of consciousness [18]. Ketamine has local anesthetic effects by interacting with receptors like the opioid receptors, monoamine, cholinergic, purinergic and adrenoreceptors [17]. Organic plant extract with sun protection factors also faces some limitation due to rigorous, time consuming process and micro yields of active compound. Titanium oxide and zinc oxide are widely used as sun protection agents but they are prone to corrosion, thereby decreasing their usage [19]. Also, organic sun protection agents are due to aromatic ring linked to a carbonyl group e.g para-aminobenzoic acid and benzophenones [20]. Chalcones with α, β unsaturated bonds and aromaticity absorbs UV light [21,22]. Therefore, all the derivatives of ketamine synthesized in the department of Pharmaceutical and Medicinal Chemistry possesses chalcone-like properties of benzene

ring and α,β unsaturated bonds. Therefore, the present study was designed to evaluate the *in vitro* sun protection of some benzylidene analogues of ketamine, due to their easy or possible production.

Fig. 1: Different ketamine derivatives

ketamine derivatives [D11 to D15] was synthesized in Pharmaceutical and Medicinal chemistry Department in which the name of every compound as: D11: -2-[2-chlorophenyl]-6-[[4-dimethylaminophenyl]methylidene]-2-[methylamino]cyclohexan-1-one, D12: 2-[2-chlorophenyl]-6-[[4-methoxyphenyl]methylidene]-2-[methylamino]cyclohexan-1-one, D13: 2-[2-chlorophenyl]-6-[[4-methoxyphenyl]methylidene]-2-[methylamino]cyclohexan-1-one, D14: 6-benzylidene-2-[2-chlorophenyl]-2-[methylamino]cyclohexan-1-one, D15: 6-[[2H-1,3-benzodioxol-4-yl]methylidene]-2-[2-chlorophenyl]-2-[methylamino]cyclohexan-1-one.

2. Materials and Methods

2.1 Chemicals

DMSO, sulfuric acid, sodium phosphate, ammonium molybdate, DPPH, ethanol, TPTZ, sodium acetate trihydrate, 2,4,6 tripyridyl-s-triazine, hydrochloric acid, $\text{FeCl}_3 \cdot 6\text{H}_2\text{O}$, sodium chloride, calcium chloride, collagenase from bacteria *Clostridium histolyticum* 0.8 units/mL, N-[3-[2-furyl] acryloyl]-Leu-Gly-Pro-Ala, tricine buffer, bovine serum albumin, glucose, sodium hydrogen phosphate, sodium dihydrogen phosphate, acetylcysteine, sivelestat, ketamine derivatives [D11-D15], N-succinyl-Ala-Ala-p-nitroanilide pancreatic elastase.

2.2 Stock Solutions of Benzylidene Analogues

Each compound D11-D15 was weighed out [0.5g] and dissolved in 50 ml DMSO. These solutions were used for antioxidant assays, sun protection factor and anti-elastase and collagenase assay.

2.3 Determination of Sun Protection Factor *in vitro*

Different concentrations of D₁₁ – D₁₅ at 25, 50 and 100 $\mu\text{g}/\text{ml}$ were scanned through 290 – 320 nm at 5 nm increments of wavelength. DMSO was used as blank solvent. The results were calculated based on the mathematical equation of Mansur et al [23].

2.4 Antioxidant assays

Total Antioxidant Assay

The method of Prieto [24] and colleagues was utilized for total antioxidant capacity of ketamine analogues. Each compound D₁₁–D₁₅ [0.1ml] was added to the reagent consisting of sulfuric acid 0.6 M, sodium phosphate 28 mM and ammonium molybdate 4mM. All tubes were incubated at 95° C in a water bath for 90 minutes. Afterwards the samples were transferred to an ice -containing compartment, and later cooled. The absorbance of all tubes were read at 695 nm. Total antioxidant capacity was expressed as μg AAE/g compound. Ascorbic acid was used as a reference compound.

2.5 DPPH Radical Scavenging Activity

Ability of D₁₁ – D₁₅ to act as anti-radical was evaluated by the method described by Braca et al [25]. DPPH ethanolic solution [0.05 mM] 0.3 ml was mixed with 1 ml of D₁₁ – D₁₅. The mixture was incubated at room temperature in dark for 30 min. absorbance was determined at 517 nm and ascorbic acid served as reference and results were calculated as percentage inhibition.

2.6 Ferric Reducing Antioxidant Power [FRAP]

The reduction of Fe^{3+} -tetra [2-pyridyl] pyrazine [TPTZ] to Fe^{2+} - tripyridyltriazine at low pH as explained by Benzie and Strain [26] was utilized. FRAP reagent made of sodium acetate buffer 300 mM

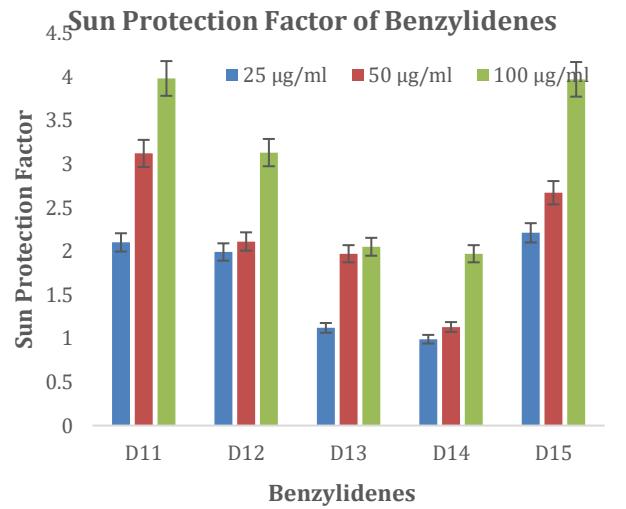
pH 3.6, 10 mM TPTZ in 40 mM HCl and 20 mM ferric chloride in a ratio of [10:1:1 v/v/v]. The ketamine analogues D₁₁ – D₁₅ were dissolve in DMSO and 30 μL of FRAP working solution was added in triplicate tubes and D₁₁ – D₁₅ compounds were also added 500 μL . The reaction mixture was incubated for 8 min and absorbance read at 593 nm. Gallic acid served as reference drug. Results were expressed as μg GAE/g benzylidene.

2.7 Anti-elastase activity

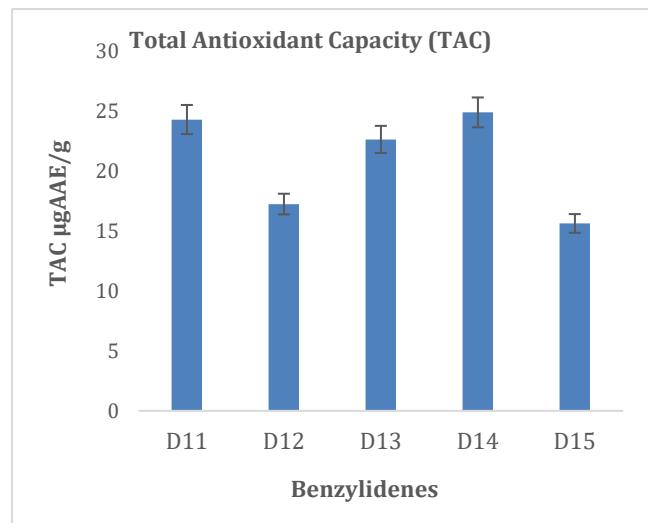
The method of Kim et al [27] was adopted for *in vitro* elastase assay. The enzyme elastase solution was prepared in distilled water and N-succinyl-Ala-P-nitroanilide [AAPVN] was prepared in buffer as substrate. The concentrations of D₁₁-D₁₅ used were 0-100 $\mu\text{g}/\text{ml}$ and were incubated with the enzyme for a time period of 15min before the addition of elastase's substrate AAPVN of 0.8 mM. Absorbance was measured at 400nm using a spectrophotometer. Analysis were done in triplicate and percentage inhibition was calculated [% inhibition] and result presented in percentages.

2.8 Collagenase inhibitory activity

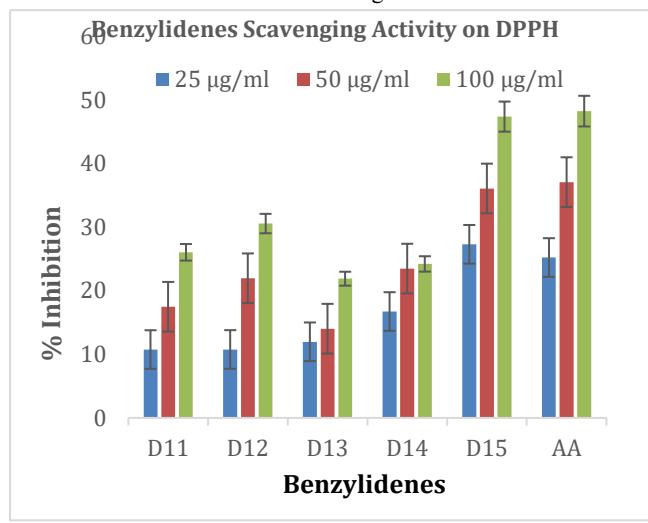
Kim et al [27] explained method was adopted. Tricine buffer was prepared 50mm and 400mm NaCl and 10mm CaCl_2 was included pH 7.5. This serves as solvent for dissolving the enzyme collagenase obtained from *Clostridium histolyticum*. When the enzyme was dissolved in tricine buffer it concentration was 0.8 units/ml. Also a 0.002 M solution of substrate N-[3-[2-furyl] acryloyl]-Leu-Gly-Pro-Ala in tricine was prepared. The benzylidene D₁₁-D₁₅ were prepared in DMSO at concentrations of 0-100 $\mu\text{g}/\text{ml}$ and the reference drug acetyl cysteine. The reaction mixture was incubated in the presence of enzyme, substrate, with or without benzylidene for 15min and absorbance was taken at 490nm. The percentage collagenase inhibition was represented as 1C₅₀.

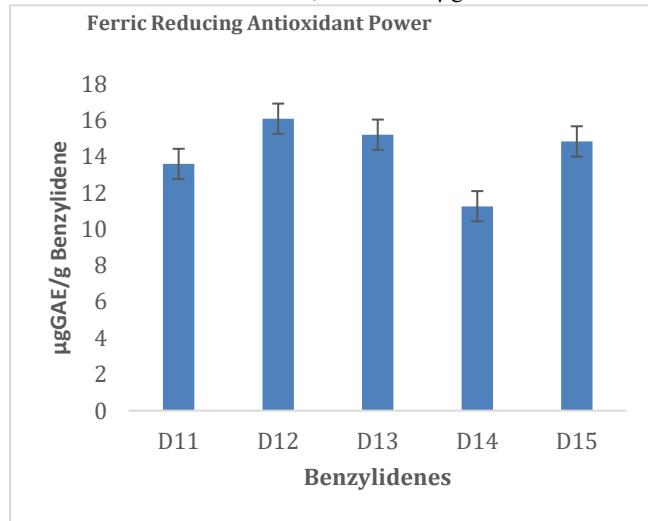

2.9 Molecular docking of elastase and collagenase

Molecular modeling and docking of the binding protein and ketamine analogs [ligands] were done using the Maestro software of OPLS3, 2018 Force field and Pymol software [28,29]. The crystal structure of *Pseudomonas aeruginosa* elastase protein complexed with N-alpha-l-rhamnopyranosyloxy[hydroxyphosphinyl]-l-leucyl-l-tryptophan [PDB: 3DBK], and the crystal Structure of Collagenase G from *Clostridium histolyticum* in complex with Isoamylphosphonyl-Gly-Pro-Ala at 3.25, angstrom resolution protein [PDB: 2Y6I] was obtained from the protein data bank [PDB] website and used for the molecular docking studies. Sivelestat was used as the control standard 3DBK, while acetylcysteine for 2Y6I, respectively.


2.10 Statistical analysis

All results were computed utilizing excel software, results were reported as mean \pm S.D. P<0.05 was also obtained through one-way analysis of variance using GraphPad prism software.


3. Results


Fig. 2: Depicts sun protection factor of benzylidene D₁₁-D₁₅. Values are mean \pm S.D [n=3]. D₁₁, D₁₅ and D₁₂ showed the highest SPF at 100 $\mu\text{g}/\text{ml}$ concentration respectively

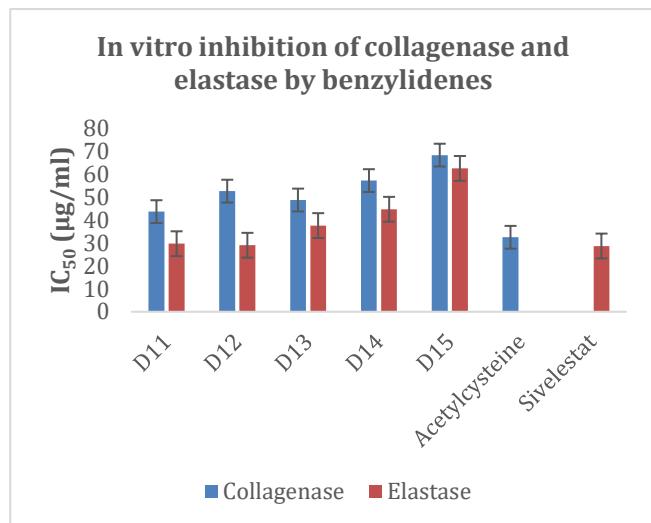

Fig. 3: Depicts total antioxidant capacity of benzylidenes D₁₁-D₁₅ represented as $\mu\text{g AAE/g}$. Values are mean $\pm\text{S.D}$ [n=3]. D₁₄, D₁₁ and D₁₃ showed higher TAC.

Fig. 4: Depicts DPPH radical scavenging ability of benzylidenes D₁₁-D₁₅ represented as percentages. Values are mean $\pm\text{S.D}$ [n=3]. D₁₅ and ascorbic acid [AA] showed higher percentages of inhibition at 25, 50 and 100 $\mu\text{g/ml}$.

Fig. 5: Depicts ferric reducing antioxidant power of benzylidenes D₁₁-D₁₅ represented as $\mu\text{gGAE/g}$. Values are mean $\pm\text{S.D}$ [n=3]. D₁₂ and D₁₃ showed higher FRAP values.

Fig. 6: Depicts inhibitory concentration at 50 % of benzylidenes D₁₁-D₁₅ represented as IC₅₀ [$\mu\text{g/ml}$]. Values are mean $\pm\text{S.D}$ [n=3]. D₁₁ and D₁₂ showed better IC₅₀ as does the standard drug acetylcysteine and sivelestat.

The results of the present study are presented as bar charts, tables and docking poses

Table 1: Molecular docking scores of D₁₁-D₁₅, silvelestat and acetyl cysteine

Compound ID	PDB ID: 3DBK		PDB ID: 2Y6I	
	Docking Score [kcal/mol]	Glide emodel	Docking Score [kcal/mol]	Glide emodel
D11	-5.20	-48.80	-4.56	-35.41
D12	-4.33	-50.27	-4.48	-33.68
D13	-4.78	-43.15	-4.45	-34.70
D14	-4.11	-46.35	-4.04	-35.91
D15	-4.10	-45.44	-4.22	-43.82
Sivelestat [Std]	-3.52	-44.30	—	—
Acetyl Cysteine [Std]	—	—	-3.05	-20.94

std – standard, NB: the lower the docking score, the better the ligand binding affinity, i.e., -5.20>-4.78>-4.33>-4.11, etc

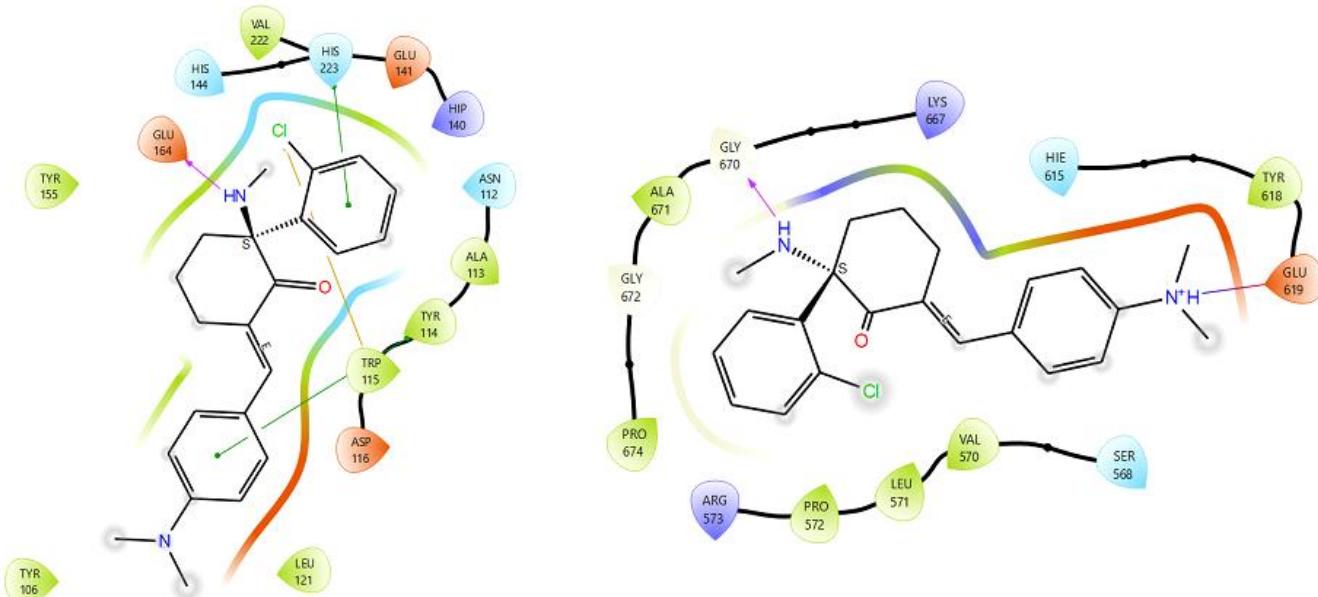


Fig. 7: Molecular docking poses of elastase [3DBK] left or collagenase [26YI] right against D11

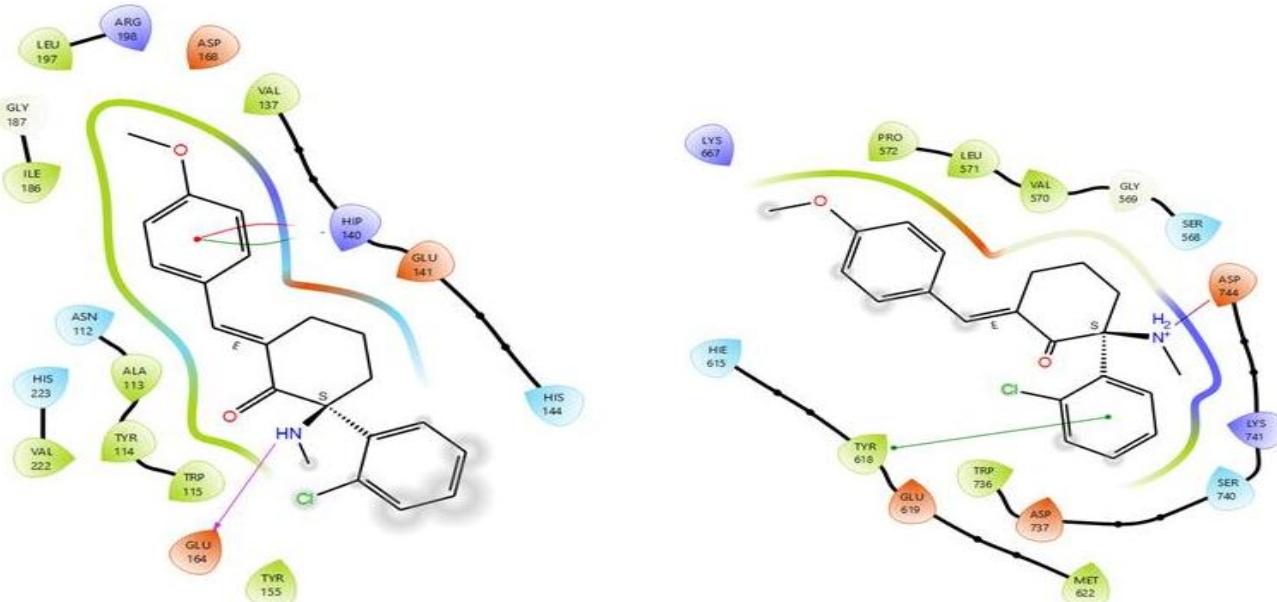


Fig. 8: Molecular docking poses of elastase [3DBK] left or collagenase [26YI] right against D12

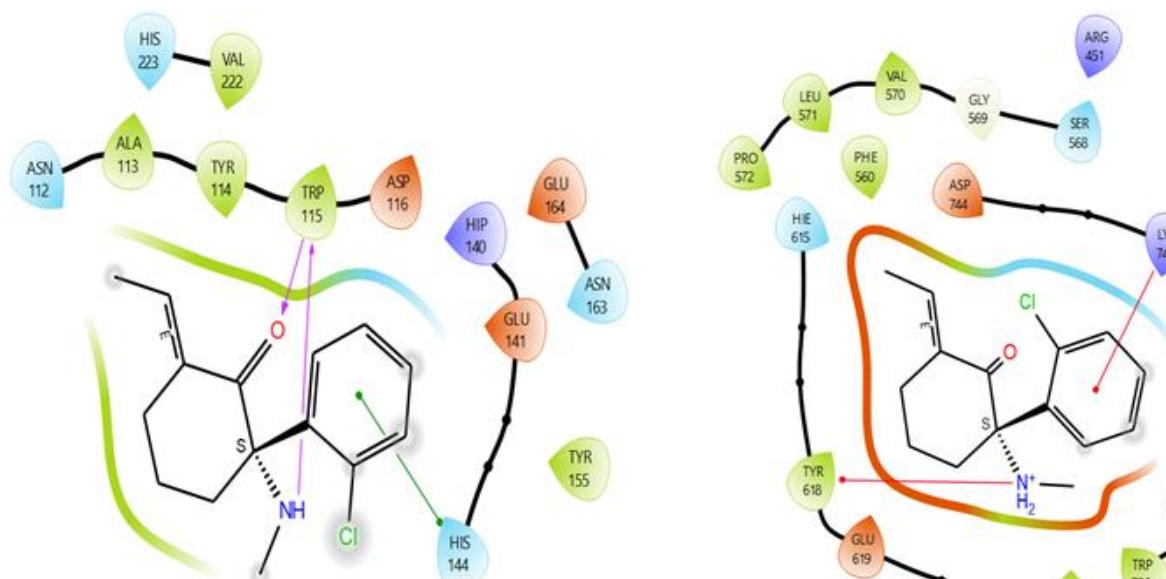


Fig. 9: Molecular docking poses of elastase [3DBK] left or collagenase [26YI] right against D13

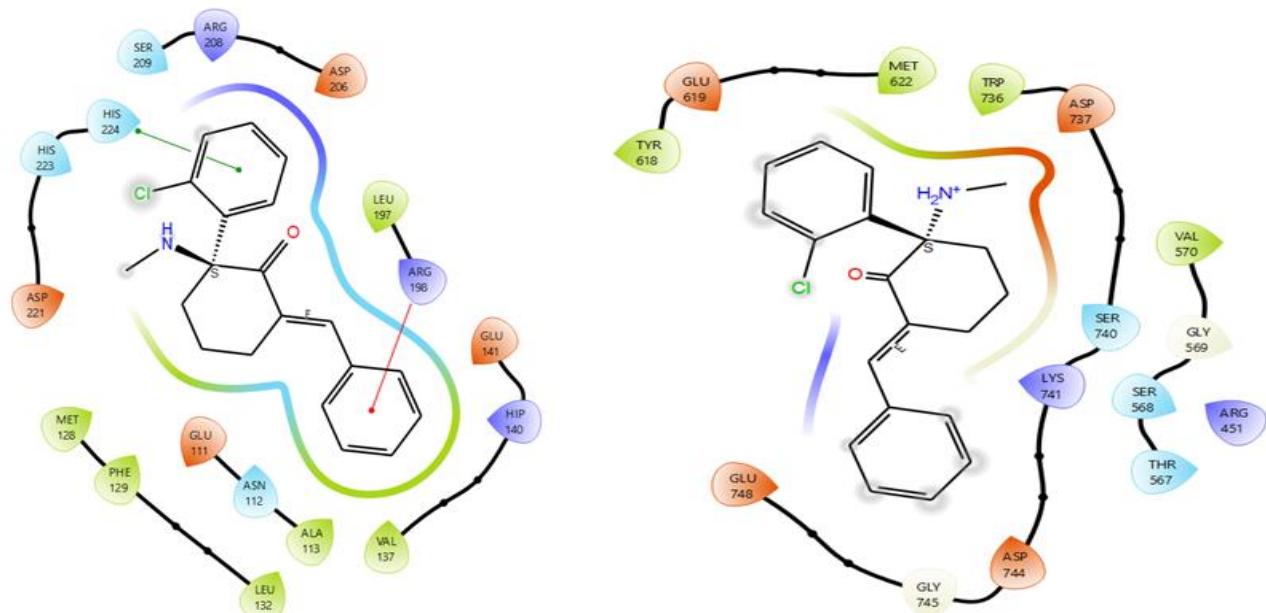


Fig. 10: Molecular docking poses of elastase [3DBK] left or collagenase [26YI] right against D14

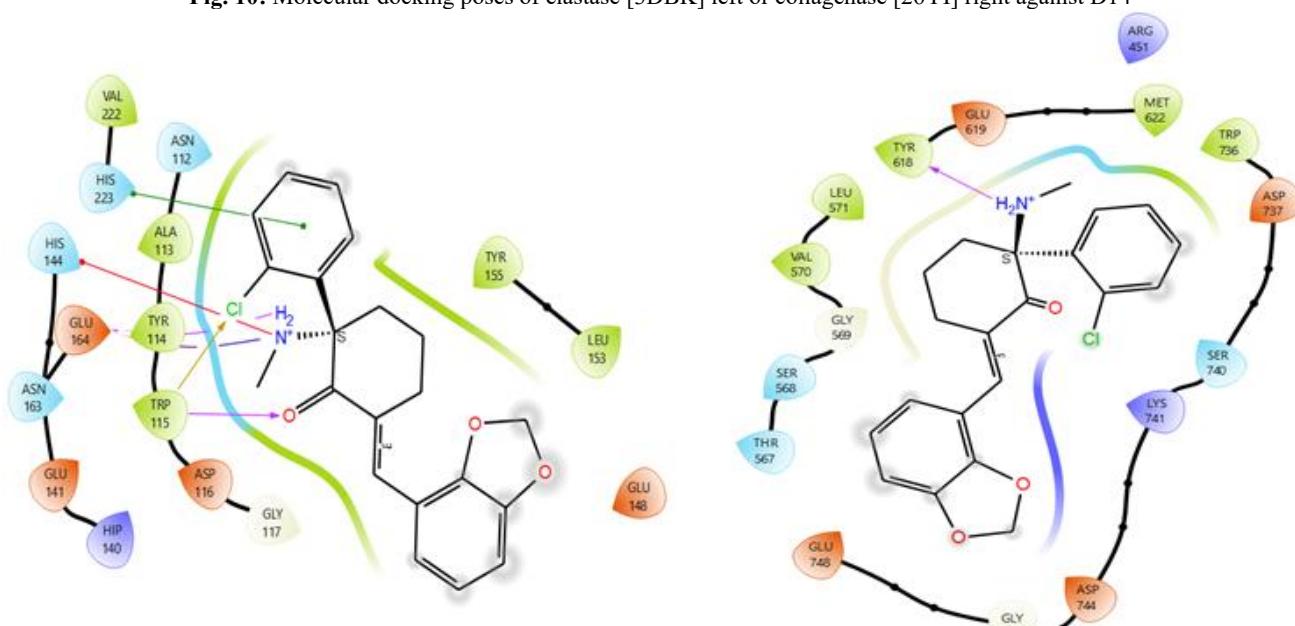


Fig. 11 Molecular docking poses of elastase [3DBK] left or collagenase [26YI] right against D15

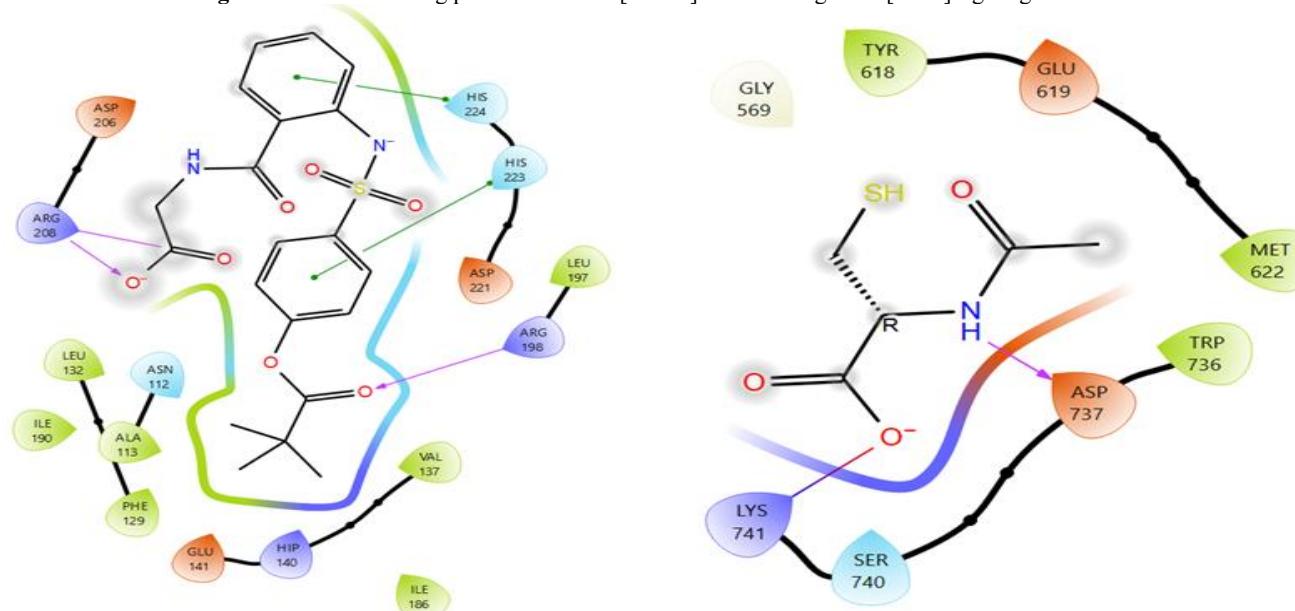


Fig. 12: Molecular docking poses of elastase [3DBK] left or collagenase [26YI] right against sivelestat and acetyl cysteine respectively

4. DISCUSSION

The radiation from the sun affects the skin, because it is the biggest external organ, it contains chromophores like melanin, DNA, RNA, proteins and water. The photochemical reaction that arises leads to the production of reactive oxygen species [30]. The destructive action of ROS to the skin can be prevented by vitamins, carotenoids and enzymatic antioxidants [31]. The rays of the sun that reaches the earth is nearly 50% visible light, 40% infrared and 10% UV radiation [32]. UV radiation pierces deeper into the skin and therefore leads to many skin disorders. Therefore, there is the need to look for safer synthetic drugs to retard the dangerous effects of the sun's rays. In the present study the sun protection factor of the different benzylidenes examined showed appreciable levels of SPF as depicted in fig 2. The results are similar to the works of Maske et al [33] and Poh-Yen et al [34].

Leopoldin et al [35] asserted that mechanism of action of antioxidant is based on hydrogen or electron transfer and metal chelation. The total antioxidant of benzylidene was carried out by the phosphomolybdate method and the results depicted in fig 3. The mechanism behind this assay was the addition of an electron to Mo [VI] to form Mo [V] by benzylidenes and thereby acting as antioxidants. Our work reveals that the total antioxidant of the benzylidenes were high in D14>D11>D13>D12>D15. These results are in line with the reports of Dasgupta and De 2004 [36]; Batool et al [37] who reported total antioxidant capacity of *Piper betle* leaf and *Brachychiton populneus* leaves respectively.

The degree of decolorization of DPPH is exhibited by antioxidants [38]. The antioxidant potentials of D11-D15 were evaluated by total antioxidant capacity, DPPH radical scavenging and FRAP assays. DPPH absorbs maximally at 517nm, the decrease in its absorbance indicated that benzylidenes have transferred an electron to the radical, thereby acting as antioxidant. The results of DPPH radical scavenging by benzylidenes indicated that D15>D14>D13>D12>D11 respectively. This is due to the ring structure of the derivatives of ketamine acting as resonance stable structures due to the abstraction of a radical. These results are in agreement with the works of Gupta et al [39] who reported DPPH scavenging activity of 3-Substituted-2-Oxindole Derivatives.

The Ketamine analogues labelled D11-D15 acted as antioxidants based on the fact that substances, that can reduce Ferric-TPTZ complex into bluish ferrous TPTZ complex are considered antioxidants [40]. The present results of the FRAP assay were reported as $\mu\text{gGAE/g}$ Benzylidenes. The mechanism of action of the derivatives of ketamine having higher FRAP values is that the structures can accommodate an electron and become stable. The results revealed that the FRAP value of D12>D13>D15>D11>D14 as depicted in fig 5 these result followed the same pattern as reported by Gupta et al [39]; Perera et al [41] and Sre et al [38].

Elasticity of the skin is maintained by the collagen found in the extracellular matrix. The intact collagen can be destroyed by ROS and metalloproteinases activity such as those of collagenase and elastase [41]. Elastin like collagen is also found on the ECM of organs and connective tissues, thereby increasing the elasticity of the skin. Elastase is a metalloproteinase enzyme that destroys elastin in the skin. The catalyzing of both collagen and elastin into smaller peptides leads to skin wrinkles, aging and hyperpigmentation. Therefore, inhibition of their activity is useful in the cosmetic industry [27,5]. The present study showed that benzylidenes inhibited elastase more compared to the inhibition of collagenase which is similar to the in silico studies. Therefore, our reports are similar to the research studies of Thring et al and Abdelfattah et al [42,43]; Matos et al [5] and Elgamal et al [4]. The 2D interaction of D11 structure and the binding site of elastase show a slightly better binding score of -5.20 kcal/mol as compared to the standard inhibitor -3.52 kcal/mol sivelestat. This was due to the presence of H-bonding on His 223, Glu 164 and Trp 115 and the chloride and benzene ring. D11 uses its amide hydrogen to interact tightly through H-bonding on Gly 670 and Glu 619 also in the active site of collagenase affording it a binding score of -4.56 kcal/mol as compared to -3.05 kcal/mol of acetyl cysteine. D12 with a -4.33 kcal/mol also displays better binding interaction in the active site of elastase as Glu 164 and HIP 140 H-bond and hydrophobically interact with D12 respectively. D12 and collagenase interact tightly according to the 2D docking model displayed showing hydrophobic interaction

between Tyr 618 and D12 and Asp 744 interacting with positively charged amide group of D12 ionically giving rise to -4.48 kcal/mol. D13 donate H-bond to Trp 115 in the active site of elastase and also uses its ketone group on cyclohexane in the structure to accept H-bond from Trp115. There is also a hydrophobic interaction between His144 and D13. D13 ionically bind to Tyr 618 utilizing its charged [positive] amine group. also there was a pi-pi-H-bonding between Lys 241 and D13. This is why the binding score of D13 and collagenase was -4.45 kcal/mol. D14 interacts with elastase via hydrophobic interaction with His 224. Also Arg 198 aslo interact with D14 through Pi-cationic interaction on the benzene ring. D14 and the active site of collagenase show no visible interaction. The active site of elastase fits with the chemical structure of D15 as there was hydrophobicity between His 223 and D15. Also an ionic bonding between His 144 and D15, H-bonding between Glu 164 and the amide group of D15. Also Trp 115 makes H-bonding to D15 as well as a halogen bond to D15. There is only one H-bond between Tyr 618 in the active site of collagenase and D15 only. In all these the binding scores of the ketamine analogues are better than the standard sivelestat and acetyl cysteine. Our reports are in line with similar works of Matos et al [5]; Elgamal et al [4] and Abdelfattah et al [43].

5. Conclusion

Our results revealed that benzylidenes derived from ketamine possess sun protective ability as it is revealed by their high SPF values. They also possess antioxidant properties because in the DPPH radical scavenging, total antioxidant capacity and ferric reducing antioxidant power assays they are better antioxidant molecules. These analogues also have anti-aging potential based on the *in vitro* spectrophotometric studies and the molecular docking studies. Therefore, these compounds are very useful in the cosmetic industry.

6. Acknowledgement

The authors would like to thank the departments of Biochemistry and Pharmaceutical and Medicinal Chemistry for making their laboratories available for the successs of this research work.

7. References

- [1]. Ivanov, I. V., Mappes, T., Schaupp, P., Lappe, C., & Wahl, S. (2018). Ultraviolet radiation oxidative stress affects eye health. *Journal of biophotonics*, 11(7), e201700377.
- [2].Figueroa, F. L., Castro-Varela, P., Vega, J., Losantos, R., Peñín, B., López-Cóndor, L., & Sampedro, D. (2024). Novel synthetic UV screen compounds inspired in mycosporine-like amino acids (MAAs): Antioxidant capacity, photoprotective properties and toxicity. *Journal of Photochemistry and Photobiology B: Biology*, 261, 113050.
- [3].Thomas, P., Swaminathan, A., & Lucas, R. M. (2012). Climate change and health with an emphasis on interactions with ultraviolet radiation: a review. *Global Change Biology*, 18(8), 2392-2405.
- [4].Elgamal, A. M., El Raey, M. A., Gaara, A., Abdelfattah, M. A., & Sobeh, M. (2021). Phytochemical profiling and anti-aging activities of Euphorbia retusa extract: in silico and in vitro studies. *Arabian Journal of Chemistry*, 14(6), 103159.
- [5].Matos, M. S., Romero-Díez, R., Álvarez, A., Bronze, M. R., Rodríguez-Rojo, S., Mato, R. B., Cocero, M.J. & Matias, A. A. (2019). Polyphenol-rich extracts obtained from winemaking waste streams as natural ingredients with cosmeceutical potential. *Antioxidants*, 8(9), 355.
- [6].Reuter, S., Gupta, S. C., Chaturvedi, M. M., & Aggarwal, B. B. (2010). Oxidative stress, inflammation, and cancer: how are they linked?. *Free radical biology and medicine*, 49(11), 1603-1616.
- [7].Poljšak, B., & Dahmane, R. (2012). Free radicals and extrinsic skin aging. *Dermatology research and practice*, 2012(1), 135206.
- [8].Woessner Jr, J. F. (1994). The family of matrix metalloproteinases. *Annals of the New York Academy of Sciences*, 732, 11-21.
- [9].Engel, C. K., Pirard, B., Schimanski, S., Kirsch, R., Habermann,

J., Klingler, O., & Wendt, K. U. (2005). Structural basis for the highly selective inhibition of MMP-13. *Chemistry & biology*, 12(2), 181-189.

[10].Sutar, M. P., & Chaudhari, S. R. (2020). Screening of in vitro sun protection factor of some medicinal plant extracts by ultraviolet spectroscopy method.

[11].Wacker, M., & Holick, M. F. (2013). Sunlight and Vitamin D: A global perspective for health. *Dermato-endocrinology*, 5(1), 51-108.

[12].Nohynek, G. J., & Schaefer, H. (2001). Benefit and risk of organic ultraviolet filters. *Regulatory Toxicology and Pharmacology*, 33(3), 285-299.

[13].Sies, H., & Stahl, W. (2004). Nutritional protection against skin damage from sunlight. *Annu. Rev. Nutr.*, 24(1), 173-200.

[14].Hernández-Barrera, R., Torres-Alvarez, B., Castanedo-Cazares, J. P., Oros-Ovalle, C., & Moncada, B. (2008). Solar elastosis and presence of mast cells as key features in the pathogenesis of melasma. *Clinical and experimental dermatology*, 33(3), 305-308.

[15].Chanchal, D. C., & Saraf Swarnlata, S. S. (2009). Herbal photoprotective formulations and their evaluation. *Open. Nat. Prod. J.* 2009;2:71-76

[16].Sachdeva, B., Sachdeva, P., Ghosh, S., Ahmad, F., & Sinha, J. K. (2023). Ketamine as a therapeutic agent in major depressive disorder and posttraumatic stress disorder: Potential medicinal and deleterious effects. *Ibrain*, 9(1), 90-101.

[17].Ahnaou, A., Huysmans, H., Biermans, R., Manyakov, N. V., & Drinkenburg, W. H. I. M. (2017). Ketamine: differential neurophysiological dynamics in functional networks in the rat brain. *Translational psychiatry*, 7(9), e1237-e1237

[18].Kovacic, P., & Somanathan, R. (2010). Clinical physiology and mechanism of dizocilpine (MK-801): Electron transfer, radicals, redox metabolites and bioactivity. *Oxidative medicine and cellular longevity*, 3(1), 13-22.

[19].Lionetti, N., & Rigano, L. (2017). The new sunscreens among formulation strategy, stability issues, changing norms, safety and efficacy evaluations. *Cosmetics*, 4(2), 15.

[20].Calafat, A. M., Wong, L. Y., Ye, X., Reidy, J. A., & Needham, L. L. (2008). Concentrations of the sunscreen agent benzophenone-3 in residents of the United States: National Health and Nutrition Examination Survey 2003–2004. *Environmental health perspectives*, 116(7), 893-897.

[21].Aksöz, B. E., & Ertan, R. (2012). Spectral properties of chalcones II. *Fabab J. Pharm. Sci.*, 37(4), 205-216.

[22].Wijayanti, L. W., Swasono, R. T., Lee, W., & Jumina, J. (2021). Synthesis and evaluation of chalcone derivatives as novel sunscreen agent. *Molecules*, 26(9), 2698.

[23].Mansur, J. D. S., Breder, M. N., Mansur, M. C., & Azulay, R. D. (1986). Determination of sun protection factor by spectrophotometry. *An. Bras. Dermatol.*, 61(3), 121-124.

[24].Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. *Analytical biochemistry*, 269(2), 337-341.

[25].Braca, A., Sortino, C., Politi, M., Morelli, I., & Mendez, J. (2002). Antioxidant activity of flavonoids from *Licania licaniaeiflora*. *Journal of ethnopharmacology*, 79(3), 379-381.

[26].Benzie, I. F., & Strain, J. J. (1999). [2] Ferrie reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. In *Methods in enzymology* (Vol. 299, pp. 15-27).

Academic press.

[27].Kim, J. H., Byun, J. C., Bandi, A. K. R., Hyun, C. G., & Lee, N. H. (2009). Compounds with elastase inhibition and free radical scavenging activities from *Callistemon lanceolatus*. *J Med Plants Res*, 3(11), 914-920.

[28].Maestro (2022). Maestro Programme. LLC, New York, NY: Schrodinger

[29].Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. *Journal of computer-aided molecular design*, 24(5), 417-422.

[30].González, S., Fernández-Lorente, M., & Gilaberte-Calzada, Y. (2008). The latest on skin photoprotection. *Clinics in dermatology*, 26(6), 614-626.

[31].Yasui, H., & Sakurai, H. (2003). Age-dependent generation of reactive oxygen species in the skin of live hairless rats exposed to UVA light. *Experimental dermatology*, 12(5), 655-661.

[32].Ullrich, S. E. (2005). Mechanisms underlying UV-induced immune suppression. *Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis*, 571(1-2), 185-205.

[33].Maske, P. P., Lokapure, S. G., Nimbalkar, D., Malavi, S., & D'souza, J. I. (2013). In vitro determination of sun protection factor and chemical stability of *Rosa kordesii* extract gel. *Journal of Pharmacy Research*, 7(6), 520-524.

[34].Poh-Yen, K., Lay-Jing, S., & Hanani, F. (2018). In vitro evaluation of photoprotective potential of the different solvent extracts of *Graptophyllum pictum* leaves. *Journal of Applied Pharmaceutical Science*, 8(1), 147-151.

[35].Leopoldini, M., Russo, N., & Toscano, M. (2011). The molecular basis of working mechanism of natural polyphenolic antioxidants. *Food chemistry*, 125(2), 288-306.

[36].Dasgupta, N., & De, B. (2004). Antioxidant activity of *Piper betle* L. leaf extract in vitro. *Food chemistry*, 88(2), 219-224.

[37].Batool, R., Khan, M. R., Sajid, M., Ali, S., & Zahra, Z. (2019). Estimation of phytochemical constituents and in vitro antioxidant potencies of *Brachychiton populneus* (Schott & Endl.) R. Br. *BMC chemistry*, 13(1), 32.

[38].Sre, P. R. R., Sheila, T., & Murugesan, K. (2012). Phytochemical screening and “in-vitro” anti-oxidant activity of methanolic root extract of *Erythrina indica*. *Asian Pacific Journal of Tropical Biomedicine*, 2(3), S1696-S1700.

[39].Gupta, A. K., Kalpana, S., & Malik, J. (2012). Synthesis and in vitro antioxidant activity of new 3-substituted-2-oxindole derivatives. *Indian journal of pharmaceutical sciences*, 74(5), 481

[40].Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., & Jiang, Y. (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. *Nutrition research*, 23(12), 1719-1726.

[41].Perera, H. D. S. M., Samarasekera, J. K. R. R., Handunnetti, S. M., & Weerasena, O. V. D. S. J. (2016). In vitro anti-inflammatory and anti-oxidant activities of Sri Lankan medicinal plants. *Industrial Crops and Products*, 94, 610-620.

[42].Thring, T. S., Hili, P., & Naughton, D. P. (2009). Anti-collagenase, anti-elastase and anti-oxidant activities of extracts from 21 plants. *BMC complementary and alternative medicine*, 9(1), 27.

[43].Abdelfattah, M. A., Dmirieh, M., Bakrim, W. B., Mouhtady, O., Ghareeb, M. A., Wink, M., & Sobeh, M. (2022). Antioxidant and anti-aging effects of *Warburgia salutaris* bark aqueous extract: Evidences from in silico, in vitro and in vivo studies. *Journal of Ethnopharmacology*, 292, 115187.