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This paper investigates applying the approximate method; Graphical Solution Method (GSM), to
theoretically solve the Time Independent Schrédinger Equation (TISE) in one dimension for a finite
square well using MATLAB. With just few lines of MATLAB coding, calculating and plotting accurate
eigenvalues (energy), eigenvectors (wave functions) and the bound eigenstates are possible for the finite
square well of a negative potential (depth of the well) of -400 eV and a well width of 0.1 nm for an
electron confined to this quantum well. These eigenvalues, eigenvectors and eigenstates are obtained and
discussed. The found energy eigenvalues and states are discrete and yield physical acceptable solutions.
The even and odd solutions of the TISE are also considered. The graphical solutions for the finite
potential well are shown. The locations of discrete eigenvalues for even and odd solutions are also
presented. These eigenvalues are tested confirming the correct eigenfunctions. The precision of these
solutions depend on well width L and on the interval dx used to integrate the equation. Exact analytical
solutions for this case are obtained and compared with results from the GSM. The accuracy and the
convergence of the numerical results are easily checked. The results showed that the GSM can be
considered as a suitable mean for determining the one dimensional solutions for the finite square well.
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Introduction

Historically, Quantum Mechanics is considered to have two independent formulations; Matrix mechanics and Wave Mechanics.

*Corresponding author:

E-mail addresses: fawzi.ikraiam@omu.edu.ly, (D. Y. Saad) dalal.saad@omu.edu.ly
Article History : Received 22 June 2023 - Received in revised form 29 September 2023 - Accepted 02 October 2023


file:///C:/Users/DELL/Google%20Drive/01العلوم%20البحثة%20و%20التطبيقية/23العدد%20الرابع%202021%20المؤتمر%20الرابع/CameraReadys%201-79/www.sebhau.edu.ly/journal/index.php/jopas
mailto:fawzi.ikraiam@omu.edu.ly
mailto:dalal.saad@omu.edu.ly

Simulation of Time Independent Schrédinger Equation for Finite Potential Well Using the Graphical Solution Method

Saad & lkraiam

The development of matrix mechanics in 1925 was credited to
Heisenberg for his theory and the description of atomic structure
starting from spectral lines. The discovery of wave mechanics was
attributed to Schrodinger who suggested it by generalizing de-
Broglie postulation in 1926. Wave mechanics described the
dynamics of microscopic matter by means of a wave equation called
Schrodinger Equation. Erwin Schrédinger developed this linear
partial differential equation of second order to explain the wave
nature of matter and particle associated to wave [1-5]. This equation
is similar to the wave equation in optics which is based on the
assumption that a particle behaves as a wave. This equation attracted
the attention of researchers since its formulation [3, 6]. The solution
of the Schrodinger equation is still a fundamental part of many
disciplines of science [7-17]. Semiconductor devices characterization
and nanostructures are examples of this [18]. The solution of the
Schrddinger Equation contains both wave function (i) and the
energy (E) of the particle under consideration. The wave function i
is most important because when the wave function is obtained, the
particle’s parameters can be identified. Parameters such as the
probability of finding the particle in a certain region at a position x,
within a region of length dx, at a particular instant of time t can be
specified by the absolute square of ¥, [(x,t)|?>. The energy of
particle, E, depends on the potential V and the boundary conditions.
E and V are very important parameters since both are constraints on
the particle. These parameters are either quantized or continuous [2].
Theoretical Considerations

Subject to its dependency on time, Schrddinger equation can be
categorized as either Time Dependent Schrodinger Equation (TDSE)
or Time Independent Schrédinger Equation (TISE) [2]. There are
numerous applications of quantum well models in, for example,
nanostructures and other fields [18]. For the case considered in this
paper, TISE has the following form:

2 2
— L2V 4 V@) = Ep(x) ()
This equation is to be solved according to a number of some selected
variables whose input values are assigned initially, such as the width,
depth and the number of data points for the case of finite square well.
Even though, there are previous attempts to solve this equation using
iterative method, e.g. [19-21], these may be lengthy and time
consuming. To attempt a quicker routine, the Graphical Solution
Method (GSM) using MATLAB simulations is used and applied to
the finite square well in this paper. The finite square well is defined
as in Figure 1 showing the values of x inside and outside with a length
L.

-L/2 0 L2
Figure 1 The finite square well.
The Schrddinger equation inside the finite well is:

h? d?y
—— T — Eu. - <x<1/2. 2
STz = B for —1/2<x<1/2 (2
Rewriting it as:
d*yp
Tz T Kiw =0 ®)
Where
2mE
K1 = 7 (4)

The finite well, shown in Figure 1, has a depth of Vo. Outside the
well, the Schrédinger equation is:
MY = >L/2 )
Sz + Vo =Ey. forlx| 2L/
For values of energy E less than the depth Vo, the Schrddinger

equation for the region outside the well is:

2m(Vy — E)

2= hz
E less than Vo implies that (Vo - E) is positive and that is Kz is a real
number. Inside the well, TISE has even and odd solutions of the form:

1/)617671
Aexp(Ky;x),x < —=L/2

U]

Dexp(—K,x).x = L/2

where:
2mE 2m(Vy — E)
K= / Rz K2 = h2

©) Even solutions

Y(x) = Beos(Kyx),  for—L/2<x<L/2 8)
Y(x) = D exp(=K,x), forx>1L/2 )
For the solution to be continuous at x = L/2, the following form is

found:
KL K,L
B cos (%) =D exp (— %) (10)
Likewise, the derivative of the solution has to be also continuous at
x = L/2 as in this equation:
KL K,L
—BK;sin (?) = —D Kyexp (— %) (11)
To remove the constants A and B from the above equations, Eq. (11)
is divided by Eq. (10) :
¢ (KlL) _ K, 1
an{—-) = X, (12)
(b) Odd Solutions

Y(x) = Csin(Kyx), for—L/2<x<L/2 (13)
Y(x) = Dexp(—K,x), forx=1L/2 (14)
Again, the solution has to be continuous at x = L/2 yielding:
/KL K,L
C sin (T) =Dexp (— T) (15)

Again, the derivative of the solution has to be continuous at x = L/2
through this equation:

KiL K,L
C K, cos (%) = —DK,exp (%) (16)
Dividing Eq.(16) by Eq. (15) gives:
t(1(’1L> _ K, 17
co 2 )7k, a7

Egs. (12) and (17) have no analytical solution and must be solved
using numerical methods. Substituting Eq. (7) into Eq. (12) and Eq.

(17) yields:
Kl 2mVo
)= = 1
tan( > ) RZK? 1, (18)

KiL 2mVo
— el [P okt 19
cot( > ) K2 1 (19)

Eqgs. (18) and (19) can be expressed in terms of the dimensionless
variables as follows:

KL L |2mE L |2mV,
¢ 2 2 / hz "’ g 2., h? @0)

One gets:

d?y

e K3y =0 (6) 52
Where tan($) = 7z 1, n=135,.. (21)
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Aexp(Kyx),x < —L/2
={Bcos(K1x),—L/2 <x <L/2, Poqq=1Csin(Kix),—L/2 <x <L/J2
Dexp(—Kyx).x = L/2
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(22)

—cot(§) = |=—1, n=2406,..

These equations can be solved using the Graphical Solution Method
(GSM). The energies for bound states are determined by plotting the
left-and right-hand sides of Eq. (21) and Eqg. (22) and by finding the
point where the curves intersect with each other. There are two basic
possibilities for the energy E and the potentials depending on the
shape of the well: That is:

1. If E > Vo (unbound states), the wave number k has the

general form \/2m(E — V,,)/h2. Inside the well, k is equal to
V2mE/h? |, and outside the well it is equal to

J2m(E —V,)/h? . The wave function is an oscillatory

function inside and outside the well, because the wave number
k is real everywhere and large inside the well, thus the
wavelength is short.

2. In finite potential wells, the particle is not exactly confined
where its wave position may spread into classically forbidden
areas. Therefore, the particle can be everywhere since the
wave function extends infinitely on both directions; hence the
name unbound states. This case is not considered in this study.

3. If0<E < Vo (bound states), the wavenumber is \/ 2mE / h?
inside the well, while outside the well it is equal to
J2m(E —Vy)/h% or 2m(V, — E)/h? (imaginary case).
Therefore, inside the well the wave function is an oscillatory
function while outside the well the wave function is an
exponential decaying function; otherwise the wave function
would diverge at x = too. Studying such cases is the aim of
this paper.
It is most important to find the energies and states, which should be
discrete, by solving the TISE for a number of arbitrary potentials.
These values of energy should yield physical acceptable solutions, i.e
the wave function at the x = +co0 must approach to zero. That is
W (xmin) = Y(xmax) = 0). How precise these solutions are depend
on the width L of the well and on the interval dx used to integrate the
equation.

Results and Discussion

In this part of the work a negative potential (depth of the well) V = -
400 eV, and the width of the well L= 0.1 nm are chosen and simulated
using codes in [22]. The value of 52 for an electron confined to this
quantum well with these parameters can be found as:

g2 = 5.6875 x 10712 x 400 x (1 x 10710)2
2 x (0.658 x 10715)2
B =263 =+5.13

= 26.3

Before plotting the left-and right hand sides of Egs. (21) and (22), it
is to be noted that the common right-hand side of the two equations
becomes infinite at # = 0 and assumes an imaginary values for &
greater than 8 = 5.13. The right- hand sides of the equations can be
plotted from a value slightly greater than 0 — 8, and the left-hand
sides of the two equations must be plotted in segments because tan(¢)
becomes infinite at 7/2 and 37/2, where cot(¢) becomes infinite at
m and 2 = 6.28. The points of intersections for left- and right-hand
sides of Egs. (21) and (22) are found by the MATLAB codes [22].
The first line of the MATLAB program defines the value of 8, the
second line of the program then produces a vector, &, consisting of
value of ¢ for 400 equally-spaced points between 0.275 and 3. The
next line of code produces a vector y, having the values of common
right-hand sides of equations (21) and (22), at the points &. The fourth
line of program produces a vector, ¢1, with value of 0.0 to a point
slightly before /2 where the tangent function is singular, and the
next line defines a vector y1, giving the values of tangent at those
values of ¢. Similarly, &2 is a vector with the value of & between /2
and slightly before 7, and &3 is a vector with values of & between «
and slightly before 37t/2. y- yields the value of the negative of the
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cotangent for the points &2 , while ys gives the value of tangent for
points &3. Finally the last line of the program produces the plot.
Figure 1 (a,b) shows the graphical solution for finite potential well
where g = 5.13. This figure is used to estimate the value of € for the
first intersection of the curves.

zgsraphical Solutin Method for Finite well (V=-400eV, L=0.1nm)
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Figure 1 (a) Location of discrete eigenvalues for even and odd
solutions using GSM. (b) The part of Figure (a) used to estimate the
value of § for first intersection of the curves.

The procedure for getting the intersection point is as follows:

The energy of the even solutions correspond to the points where the
tangent curve intersects the curve corresponding to the right-hand
side of the equations, while the energy of the odd solutions
correspond to the points where the negative of the cotangent
intersects the curve corresponding to the right-hand side of the
equations. The value of & for the first intersection point can be
estimated, as shown in Figure 1 (b), to be é = 1.3121. Table 1 shows
the even and odd solutions of the functions considered.

Table 1: Even and odd solutions

Even Solution QOdd solution
1.3121 2.608
3.8602 4,970

The values of the energy for particular values of ¢ can be calculated
by using definition ¢ = K;1/2 to derive the following equation:

E=—-F-=+V 23
meL2+0 ( )

Substituting &, = 1.3121, #=0.658 x 10-'% eV.s , me = 5.6875 x 10-
12 gV/C?, width L= 0.1 nm, and the depth V,=-400 eV into equation
(23) gives:

Ei1=26.21 - 400 = -373.788 eV.

Similarly, the values of energy E corresponding to the other three
intersections are estimated to be:
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E»=103.5618 — 400 = - 296.438 eV,

E3 =226.884 — 400 = - 173.116 eV, and

E4 = 376.107 — 400 = - 23.893 eV.

The wave functions for these four states are denoted by
Py, U5, Y3, and Yr,. Figure 2 shows the even and odd bound solutions
of an electron in a finite well. After obtaining the energy eigenvalues
from the GSM, these eigenvalues are tested to check that they yield
the correct eigenfunctions, i.e. physically acceptable solution (wave
function converges to zero at boundary conditions). From Figure 2,
it can be seen that the correct wave function (physically acceptable
solution) is obtained from the three first eigenvalues. However, the
last eigenvalue gave an invalid wave function, because at end of the
well the wave is not equal to zero. This means that the last value for
energy eigenvalue at n = 4, E4= - 23.893 eV using GSM corresponds
to the end value of wave function Y, (Xpmax) = —4.41 x 10* near the
boundary conditions. The reason is that the fourth intersection point
is not very accurate, £ = 4.965. The intersection yields the same
result for & = 4.989 at E4 =-21.325 eV corresponding to the end wave
function Y4 (Xmax)= - 6.03 x 103,

Finite Well (V=-400eV,L=0.1nm). FDM Wavefunction for n=2, E2 =.206.4382eV
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Figure 2 The even and odd bound solutions of an electron in a finite
well.

Conclusion

In this paper an attempt an attempt is made to find the energy
eigenvalues and wave functions for the particle inside the finite
square well potential by solving time independent Schrodinger
equation (TISE) via the Graphical Solution Method using MATLAB.
Accurate eigenvalues (energy), eigenvectors (wave functions) and
the bound eigenstates were calculated and plotted for a negative
potential of -400 eV and a width of 0.1 nm for an electron confined
to this quantum well. The found energy eigenvalues and states were
discrete and yield physical acceptable solutions. The locations of

discrete eigenvalues for even and odd solutions were also presented.
Exact analytical solutions for this case were found and compared
with results from the GSM. The accuracy and the convergence of the
numerical results are easily checked.
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