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 A B S T R A C T 

This paper investigates applying the approximate method; Graphical Solution Method (GSM), to 

theoretically solve the Time Independent Schrödinger Equation (TISE) in one dimension for a finite 

square well using MATLAB. With just few lines of MATLAB coding, calculating and plotting accurate 

eigenvalues (energy), eigenvectors (wave functions) and the bound eigenstates are possible for the finite 

square well of a negative potential (depth of the well) of -400 eV and a well width of 0.1 nm for an 

electron confined to this quantum well. These eigenvalues, eigenvectors and eigenstates are obtained and 

discussed. The found energy eigenvalues and states are discrete and yield physical acceptable solutions. 

The even and odd solutions of the TISE are also considered. The graphical solutions for the finite 

potential well are shown. The locations of discrete eigenvalues for even and odd solutions are also 

presented. These eigenvalues are tested confirming the correct eigenfunctions. The precision of these 

solutions depend on well width L and on the interval dx used to integrate the equation. Exact analytical 

solutions for this case are obtained and compared with results from the GSM. The accuracy and the 

convergence of the numerical results are easily checked. The results showed that the GSM can be 

considered as a suitable mean for determining the one dimensional solutions for the finite square well. 

 غير معتمدة على الزمن لبئر الجهد المحدود باستخدام طريقة الحل البياني  محاكاة معادلة شرودنجر  

 فوزي عبدالكريم اكريم*دلال يحي سعد  و 

 ليبيا  البيضاء، المختار،جامعة عمر  العلوم،كلية  الفيزياء،قسم 

 

Introduction 

Historically, Quantum Mechanics is considered to have two independent formulations; Matrix mechanics and Wave Mechanics. 

 المفتاحية: الكلمات

معادلة شرودنجر غير معتمدة على 

 الزمن

 بئر مربع محدود 

 طريقة الحل البياني 

 القيم الذاتية للطاقة 

 دوال ذاتية 

 الملخص 

( ، لحل معادلة شرودنجر غير  GSMهذا الورقة تتحقق نظريا من تطبيق طريقة التقريب، طريقة الحل البياني)

( بفقط عدد قليل MATLAB( في بعد واحد لبئر الجهد المحدود باستخدام المات لاب . )TISEمعتمدة على الزمن )

من الممكن حساب ورسم القيم الذاتية الصحيحة )طاقة( ، المتجهات الذاتية )دوال    لاب، كان من برامج المات  

وعرض البئر بقيمة     eV  400-الموجه(، والحالات الذاتية المقيدة لبئر مربع محدود لجهد سالب )عمق البئر( بقيمة  

0.1  nm    المتجهات الذاتية والحالات الذاتية   الذاتية،لإلكترون محصور في هذا البئر الكمي. تم مناقشة هذه القيم

ايضا تم حساب   مقبولة. المتحصل عليها. القيم الذاتية وحالات طاقة المتحصل عليها منفصلة وتنتج حلول فيزيائية  

للبئر محدود   البيانية  الحلول  توضيح  تم  الزمن.  الزوجيه والفردية لمعادلة شرودنجر غير معتمدة على  الحلول 

الجهد. مواقع القيم الذاتية المنفصلة للحلول الزوجية والفردية ايضا تم عرضها. تم اختبار هذه القيم الذاتية 

ا هذه  دقة  الصحيحة.  الذاتية  الدوال  البئر  لتأكيد  عرض  على  يعتمد  لتكامل   dxوالفترة    Lلحلول  المستخدمة 

( دقة  GSM)البياني.  المعادلة. تم ايجاد الحلول التحليلية الدقيقة لهذه الحالة ومقارنتها مع نتائج طريقة الحل  

النتائج وسيلة    وتقارب  اعتبارها  يمكن  البياني  الحل  طريقة  ان  بينت  النتائج  بسهولة.  فحصها  يمكن  العددية 

 مناسبة لحساب حلول البعد الواحد للبئر المربع المحدود. 
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The development of matrix mechanics in 1925 was credited to 

Heisenberg for his theory and the description of atomic structure 

starting from spectral lines. The discovery of wave mechanics was 

attributed to Schrödinger who suggested it by generalizing de-

Broglie postulation in 1926. Wave mechanics described the 

dynamics of microscopic matter by means of a wave equation called 

Schrödinger Equation. Erwin Schrödinger developed this linear 

partial differential equation of second order to explain the wave 

nature of matter and particle associated to wave [1-5]. This equation 

is similar to the wave equation in optics which is based on the 

assumption that a particle behaves as a wave. This equation attracted 

the attention of researchers since its formulation [3, 6]. The solution 

of the Schrodinger equation is still a fundamental part of many 

disciplines of science [7-17]. Semiconductor devices characterization 

and nanostructures are examples of this [18]. The solution of the 

Schrödinger Equation contains both wave function ( 𝜓)  and the 

energy (E) of the particle under consideration. The wave function 𝜓 

is most important because when the wave function is obtained, the 

particle’s parameters can be identified. Parameters such as the 

probability of finding the particle in a certain region at a position x, 

within a region of length dx, at a particular instant of time t can be 

specified by the absolute square of  𝛹 , |𝜓(𝑥, 𝑡)|2 . The energy of 

particle, E, depends on the potential V and the boundary conditions. 

E and V are very important parameters since both are constraints on 

the particle. These parameters are either quantized or continuous [2].   

Theoretical Considerations 

Subject to its dependency on time, Schrödinger equation can be 

categorized as either Time Dependent Schrödinger Equation (TDSE) 

or Time Independent Schrödinger Equation (TISE) [2]. There are 

numerous applications of quantum well models in, for example, 

nanostructures and other fields [18]. For the case considered in this 

paper, TISE has the following form: 

−
ℏ2

2𝑚

𝑑2𝜓(𝑥)

𝑑𝑥2
+ 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)    (1) 

This equation is to be solved according to a number of some selected 

variables whose input values are assigned initially, such as the width, 

depth and the number of data points for the case of finite square well. 

Even though, there are previous attempts to solve this equation using 

iterative method, e.g. [19-21], these may be lengthy and time 

consuming. To attempt a quicker routine, the Graphical Solution 

Method (GSM) using MATLAB simulations is used and applied to 

the finite square well in this paper. The finite square well is defined 

as in Figure 1 showing the values of x inside and outside with a length 

L. 

 
Figure 1 The finite square well. 

The Schrödinger equation inside the finite well is: 

−
ℏ2

2𝑚

𝑑2𝜓

𝑑𝑥2 = 𝐸𝜓.       𝑓𝑜𝑟 − 1/2 ≤ 𝑥 ≤ 1/2. (2) 

Rewriting it as: 

𝑑²𝜓

𝑑𝑥²
+ 𝐾1

2𝜓 = 0 (3) 

Where 

𝐾1 = √
2𝑚𝐸

ℏ2  (4) 

The finite well, shown in Figure 1, has a depth of V0. Outside the 

well, the Schrödinger equation is: 

−ℏ²

2𝑚

𝑑²𝜓

𝑑𝑥²
 + 𝑉0𝜓 = 𝐸𝜓.    𝑓𝑜𝑟|𝑥 | ≥ 𝐿/2 (5) 

For values of energy E less than the depth V0, the Schrödinger 

equation for the region outside the well is: 

𝑑²𝜓

𝑑𝑥²
− 𝐾2

2𝜓 = 0 (6) 

Where 

𝐾2 = √
2𝑚(𝑉0 − 𝐸)

ℏ2   (7) 

E less than V0 implies that (V0 - E) is positive and that is K2 is a real 

number. Inside the well, TISE has even and odd solutions of the form: 

𝜓𝑒𝑣𝑒𝑛

= {

𝐴𝑒𝑥𝑝(𝐾2𝑥), 𝑥 ≤ −𝐿/2

𝐵𝑐𝑜𝑠(𝐾1𝑥), −𝐿/2 < 𝑥 < 𝐿/2

𝐷𝑒𝑥𝑝(−𝐾2𝑥). 𝑥 ≥ 𝐿/2

,    𝜓𝑜𝑑𝑑= {

𝐴𝑒𝑥𝑝(𝐾2𝑥), 𝑥 ≤ −𝐿/2

𝐶𝑠𝑖𝑛(𝐾1𝑥), −𝐿/2 < 𝑥 < 𝐿/2

𝐷𝑒𝑥𝑝(−𝐾2𝑥). 𝑥 ≥ 𝐿/2

 

where: 

𝐾1 = √
2𝑚𝐸

ℏ2  ,                         𝐾2 = √
2𝑚(𝑉0 − 𝐸)

ℏ2  

(a) Even solutions  

𝜓(𝑥) = 𝐵𝑐𝑜𝑠(𝐾1𝑥),        𝑓𝑜𝑟 − 𝐿/2 ≤ 𝑥 ≤ 𝐿/2 (8) 

 

𝜓(𝑥) = 𝐷 exp(−𝐾2𝑥) ,            𝑓𝑜𝑟 𝑥 ≥ 𝐿/2 (9) 

For the solution to be continuous at 𝑥 = 𝐿/2, the following form is 

found: 

𝐵 𝑐𝑜𝑠 (
𝐾1𝐿

2
) = 𝐷 𝑒𝑥𝑝 (−

𝐾2𝐿

2
) (10) 

Likewise, the derivative of the solution has to be also continuous at 

𝑥 = 𝐿/2 as in this equation: 

−𝐵𝐾1𝑠𝑖𝑛 (
𝐾1𝐿

2
) = −𝐷 𝐾2𝑒𝑥𝑝 (−

𝐾2𝐿

2
) (11) 

To remove the constants A and B from the above equations, Eq. (11) 

is divided by Eq. (10) :  

tan (
𝐾1𝐿

2
) =

𝐾2

𝐾1
  (12) 

(b) Odd Solutions 

𝜓(𝑥) = 𝐶𝑠𝑖𝑛(𝐾1𝑥),   𝑓𝑜𝑟 − 𝐿/2 ≤ 𝑥 ≤ 𝐿/2 (13) 

𝜓(𝑥) = 𝐷 exp(−𝐾2𝑥),    𝑓𝑜𝑟 𝑥 ≥ 𝐿/2 (14) 

Again, the solution has to be continuous at 𝑥 = 𝐿/2 yielding: 

𝐶 𝑠𝑖𝑛 (
𝐾1𝐿

2
) = 𝐷 𝑒𝑥𝑝 (−

𝐾2𝐿

2
) (15) 

Again, the derivative of the solution has to be continuous at 𝑥 = 𝐿/2 

through this equation: 

𝐶 𝐾1𝑐𝑜𝑠 (
𝐾1𝐿

2
) = −𝐷𝐾2𝑒𝑥𝑝 (

𝐾2𝐿

2
) (16) 

Dividing Eq.(16) by Eq. (15) gives: 

−cot (
𝐾1𝐿

2
) =

𝐾2

𝐾1
 (17) 

Eqs. (12) and (17) have no analytical solution and must be solved 

using numerical methods. Substituting Eq. (7) into Eq. (12) and Eq. 

(17) yields: 

tan (
𝐾1𝑙

2
) = √

2𝑚𝑉𝑜

ℏ2𝐾1
2 − 1 ,        (18) 

−cot (
𝐾1𝐿

2
) = √

2𝑚𝑉𝑜

ℏ2𝐾1
2 − 1       (19) 

Eqs. (18) and (19) can be expressed in terms of the dimensionless 

variables as follows: 

𝜉 =
𝐾1𝐿

2
=

𝐿

2
√

2𝑚𝐸

ℏ2 ,              𝛽 =
𝐿

2
√

2𝑚𝑉0

ℏ2  (20) 

One gets: 

tan(𝜉) = √
𝛽2

𝜉2 − 1 ,                    𝑛 = 1,3,5, … (21) 
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−cot(𝜉) = √
𝛽2

𝜉2 − 1,                  𝑛 = 2,4,6, … 

(22) 

 

These equations can be solved using the Graphical Solution Method 

(GSM). The energies for bound states are determined by plotting the 

left-and right-hand sides of Eq. (21) and Eq. (22) and by finding the 

point where the curves intersect with each other. There are two basic 

possibilities for the energy E and the potentials depending on the 

shape of the well: That is: 

1. If E > V0 (unbound states), the wave number k has the 

general form √2𝑚(𝐸 − 𝑉0) ℏ2⁄ . Inside the well, k is equal to 

√2𝑚𝐸 ℏ2⁄ , and outside the well it is equal to 

√2𝑚(𝐸 − 𝑉0) ℏ2⁄ . The wave function is an oscillatory 

function inside and outside the well, because the wave number 

k is real everywhere and large inside the well, thus the 

wavelength is short. 

2. In finite potential wells, the particle is not exactly confined 

where its wave position may spread into classically forbidden 

areas. Therefore, the particle can be everywhere since the 

wave function extends infinitely on both directions; hence the 

name unbound states. This case is not considered in this study. 

3. If 0 < E < V0 (bound states), the wavenumber is √2𝑚𝐸 ℏ2⁄  

inside the well, while outside the well it is equal to 

√2𝑚(𝐸 − 𝑉0) ℏ2⁄  or √2𝑚(𝑉0 − 𝐸) ℏ2⁄  (imaginary case). 

Therefore, inside the well the wave function is an oscillatory 

function while outside the well the wave function is an 

exponential decaying function; otherwise the wave function 

would diverge at 𝑥 = ±∞. Studying such cases is the aim of 

this paper. 

It is most important to find the energies and states, which should be 

discrete, by solving the TISE for a number of arbitrary potentials. 

These values of energy should yield physical acceptable solutions, i.e 

the wave function at the 𝑥 = ±∞ must approach to zero. That is 

(𝜓(𝑥𝑚𝑖𝑛) = 𝜓(𝑥𝑚𝑎𝑥) = 0). How precise these solutions are depend 

on the width L of the well and on the interval dx used to integrate the 

equation. 

Results and Discussion 

In this part of the work a negative potential (depth of the well) V = -

400 eV, and the width of the well L= 0.1 nm are chosen and simulated 

using codes in [22]. The value of 𝛽2 for an electron confined to this 

quantum well with these parameters can be found as: 

𝛽2 =
𝑚𝑉0𝐿2

2ℏ2  

𝛽2 =
5.6875 × 10−12 × 400 × (1 × 10−10)2

2 × (0.658 × 10−15)2 = 26.3 

𝛽 = √26.3 = ±5.13 

 

Before plotting the left-and right hand sides of Eqs. (21) and (22), it 

is to be noted that the common right-hand side of the two equations 

becomes infinite at β = 0 and assumes an imaginary values for 𝜉 

greater than 𝛽 = 5.13. The right- hand sides of the equations can be 

plotted from a value slightly greater than 0 → 𝛽, and the left-hand 

sides of the two equations must be plotted in segments because tan(𝜉) 

becomes infinite at 𝜋/2 and 3𝜋/2, where cot(𝜉) becomes infinite at 

𝜋 and 2𝜋 = 6.28. The points of intersections for left- and right-hand 

sides of Eqs. (21) and (22) are found by the MATLAB codes [22]. 

The first line of the MATLAB program defines the value of 𝛽, the 

second line of the program then produces a vector, 𝜉, consisting of 

value of 𝜉 for 400 equally-spaced points between 0.275 and 𝛽. The 

next line of code produces a vector y, having the values of common 

right-hand sides of equations (21) and (22), at the points 𝜉. The fourth 

line of program produces a vector, 𝜉1, with value of 0.0 to a point 

slightly before 𝜋/2 where the tangent function is singular, and the 

next line defines a vector y1, giving the values of tangent at those 

values of 𝜉. Similarly, 𝜉2 is a vector with the value of 𝜉 between 𝜋/2 

and slightly before 𝜋, and 𝜉3 is a vector with values of 𝜉 between 𝜋 

and slightly before 3𝜋/2. y2 yields the value of the negative of the 

cotangent for the points 𝜉2 , while y3 gives the value of tangent for 

points 𝜉 3. Finally the last line of the program produces the plot. 

Figure 1 (a,b) shows the graphical solution for finite potential well 

where 𝛽 = 5.13. This figure is used to estimate the value of ξ for the 

first intersection of the curves. 

 
(a) 

 
(b) 

Figure 1 (a) Location of discrete eigenvalues for even and odd 

solutions using GSM. (b) The part of Figure (a) used to estimate the 

value of ξ for first intersection of the curves. 

 

The procedure for getting the intersection point is as follows: 

The energy of the even solutions correspond to the points where the 

tangent curve intersects the curve corresponding to the right-hand 

side of the equations, while the energy of the odd solutions 

correspond to the points where the negative of the cotangent 

intersects the curve corresponding to the right-hand side of the 

equations. The value of 𝜉  for the first intersection point can be 

estimated, as shown in Figure 1 (b), to be 𝜉 = 1.3121. Table 1 shows 

the even and odd solutions of the functions considered.   

Table 1: Even and odd solutions 

Even Solution Odd solution 

1.3121 2.608 

3.8602 4.970 

 

The values of the energy for particular values of 𝜉 can be calculated 

by using definition 𝜉 = 𝐾1𝑙/2 to derive the following equation: 

  

𝐸 =
2ℏ2𝜉2

𝑚𝑒𝐿2
+ 𝑉0 (23) 

Substituting 𝜉1 = 1.3121 , ℏ=0.658 x 10-15 eV.s , me = 5.6875 x 10-

12 eV/C2, width L= 0.1 nm, and the depth 𝑉0=-400 eV into equation 

(23) gives: 

E1= 26.21 – 400 = -373.788 eV. 

Similarly, the values of energy E corresponding to the other three 

intersections are estimated to be: 
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E2 = 103.5618 – 400 = - 296.438 eV, 

E3 = 226.884 – 400 = - 173.116 eV, and 

E4 = 376.107 – 400 = - 23.893 eV. 

The wave functions for these four states are denoted by 

ψ1, ψ2, ψ3, and ψ4. Figure 2 shows the even and odd bound solutions 

of an electron in a finite well. After obtaining the energy eigenvalues 

from the GSM, these eigenvalues are tested to check that they yield 

the correct eigenfunctions, i.e. physically acceptable solution (wave 

function converges to zero at boundary conditions). From Figure 2, 

it can be seen that the correct wave function (physically acceptable 

solution) is obtained from the three first eigenvalues. However, the 

last eigenvalue gave an invalid wave function, because at end of the 

well the wave is not equal to zero. This means that the last value for 

energy eigenvalue at n = 4, E4= - 23.893 eV using GSM corresponds 

to the end value of wave function ψ4(xmax) = −4.41 × 104 near the 

boundary conditions. The reason is that the fourth intersection point 

is not very accurate,  ξ =  4.965. The intersection yields the same 

result for ξ = 4.989 at E4 = -21.325 eV corresponding to the end wave 

function ψ4(xmax)= - 6.03 x 103.  
 

 

Figure 2 The even and odd bound solutions of an electron in a finite 

well. 

Conclusion  

In this paper an attempt an attempt is made to find the energy 

eigenvalues and wave functions for the particle inside the finite 

square well potential by solving time independent Schrodinger 

equation (TISE) via the Graphical Solution Method using MATLAB. 

Accurate eigenvalues (energy), eigenvectors (wave functions) and 

the bound eigenstates were calculated and plotted for a negative 

potential of -400 eV and a width of 0.1 nm for an electron confined 

to this quantum well. The found energy eigenvalues and states were 

discrete and yield physical acceptable solutions. The locations of 

discrete eigenvalues for even and odd solutions were also presented. 

Exact analytical solutions for this case were found and compared 

with results from the GSM. The accuracy and the convergence of the 

numerical results are easily checked. 
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